These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 9399076)
21. The formation of skeletal muscle: from somite to limb. Buckingham M; Bajard L; Chang T; Daubas P; Hadchouel J; Meilhac S; Montarras D; Rocancourt D; Relaix F J Anat; 2003 Jan; 202(1):59-68. PubMed ID: 12587921 [TBL] [Abstract][Full Text] [Related]
22. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of myoD. Lemercier C; To RQ; Carrasco RA; Konieczny SF EMBO J; 1998 Mar; 17(5):1412-22. PubMed ID: 9482738 [TBL] [Abstract][Full Text] [Related]
23. Loss-of-function mutations reveal that the Drosophila nautilus gene is not essential for embryonic myogenesis or viability. Balagopalan L; Keller CA; Abmayr SM Dev Biol; 2001 Mar; 231(2):374-82. PubMed ID: 11237466 [TBL] [Abstract][Full Text] [Related]
24. ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation. Postigo AA; Dean DC EMBO J; 1997 Jul; 16(13):3935-43. PubMed ID: 9233803 [TBL] [Abstract][Full Text] [Related]
25. Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Williams BA; Ordahl CP Development; 1994 Apr; 120(4):785-96. PubMed ID: 7600957 [TBL] [Abstract][Full Text] [Related]
26. Drosophila Lame duck, a novel member of the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Duan H; Skeath JB; Nguyen HT Development; 2001 Nov; 128(22):4489-500. PubMed ID: 11714674 [TBL] [Abstract][Full Text] [Related]
27. myoblasts incompetent encodes a zinc finger transcription factor required to specify fusion-competent myoblasts in Drosophila. Ruiz-Gómez M; Coutts N; Suster ML; Landgraf M; Bate M Development; 2002 Jan; 129(1):133-41. PubMed ID: 11782407 [TBL] [Abstract][Full Text] [Related]
28. Non conservation of function for the evolutionarily conserved prdm1 protein in the control of the slow twitch myogenic program in the mouse embryo. Vincent SD; Mayeuf A; Niro C; Saitou M; Buckingham M Mol Biol Evol; 2012 Oct; 29(10):3181-91. PubMed ID: 22522309 [TBL] [Abstract][Full Text] [Related]
29. Ascl2 inhibits myogenesis by antagonizing the transcriptional activity of myogenic regulatory factors. Wang C; Wang M; Arrington J; Shan T; Yue F; Nie Y; Tao WA; Kuang S Development; 2017 Jan; 144(2):235-247. PubMed ID: 27993983 [TBL] [Abstract][Full Text] [Related]
30. Hedgehog signalling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Coutelle O; Blagden CS; Hampson R; Halai C; Rigby PW; Hughes SM Dev Biol; 2001 Aug; 236(1):136-50. PubMed ID: 11456450 [TBL] [Abstract][Full Text] [Related]
31. Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function. Wei Q; Rong Y; Paterson BM Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5461-6. PubMed ID: 17376873 [TBL] [Abstract][Full Text] [Related]
32. EBF proteins participate in transcriptional regulation of Xenopus muscle development. Green YS; Vetter ML Dev Biol; 2011 Oct; 358(1):240-50. PubMed ID: 21839736 [TBL] [Abstract][Full Text] [Related]
33. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Gustafsson MK; Pan H; Pinney DF; Liu Y; Lewandowski A; Epstein DJ; Emerson CP Genes Dev; 2002 Jan; 16(1):114-26. PubMed ID: 11782449 [TBL] [Abstract][Full Text] [Related]
34. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development. Grifone R; Xie X; Bourgeois A; Saquet A; Duprez D; Shi DL Mech Dev; 2014 Nov; 134():1-15. PubMed ID: 25217815 [TBL] [Abstract][Full Text] [Related]
35. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Bergstrom DA; Tapscott SJ Mol Cell Biol; 2001 Apr; 21(7):2404-12. PubMed ID: 11259589 [TBL] [Abstract][Full Text] [Related]
36. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Ranganayakulu G; Zhao B; Dokidis A; Molkentin JD; Olson EN; Schulz RA Dev Biol; 1995 Sep; 171(1):169-81. PubMed ID: 7556894 [TBL] [Abstract][Full Text] [Related]
37. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Zammit PS Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046 [TBL] [Abstract][Full Text] [Related]
38. Identification of a regulatory function for an orphan receptor in muscle: COUP-TF II affects the expression of the myoD gene family during myogenesis. Muscat GE; Rea S; Downes M Nucleic Acids Res; 1995 Apr; 23(8):1311-8. PubMed ID: 7753622 [TBL] [Abstract][Full Text] [Related]
39. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Davis RL; Turner DL Oncogene; 2001 Dec; 20(58):8342-57. PubMed ID: 11840327 [TBL] [Abstract][Full Text] [Related]
40. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Hu E; Tontonoz P; Spiegelman BM Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9856-60. PubMed ID: 7568232 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]