These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9399328)

  • 41. Integrated electromyogram and eye-gaze tracking cursor control system for computer users with motor disabilities.
    Chin CA; Barreto A; Cremades JG; Adjouadi M
    J Rehabil Res Dev; 2008; 45(1):161-74. PubMed ID: 18566935
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Affine transform to reform pixel coordinates of EOG signals for controlling robot manipulators using gaze motions.
    Rusydi MI; Sasaki M; Ito S
    Sensors (Basel); 2014 Jun; 14(6):10107-23. PubMed ID: 24919013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Offline Calibration for Infant Gaze and Head Tracking across a Wide Horizontal Visual Field.
    Capparini C; To MPS; Dardenne C; Reid VM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A low-computational approach on gaze estimation with eye touch system.
    Topal C; Gunal S; Koçdeviren O; Doğan A; Gerek ÖN
    IEEE Trans Cybern; 2014 Feb; 44(2):228-39. PubMed ID: 23757546
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a gaze-sensitive virtual social interactive system for children with autism.
    Lahiri U; Warren Z; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):443-52. PubMed ID: 21609889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of Three Gaze-position Calibration Techniques in First Purkinje Image-based Eye Trackers.
    Ntodie M; Bharadwaj SR; Balaji S; Saunders KJ; Little JA
    Optom Vis Sci; 2019 Aug; 96(8):587-598. PubMed ID: 31318801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acquisition of Predictable Vertical Visual Targets: Eye-Head Coordination and the Triggering Effect.
    Kolev OI; Reschke MF
    J Mot Behav; 2016; 48(6):552-561. PubMed ID: 27362612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cognitive load in tele-robotic surgery: a comparison of eye tracker designs.
    Soberanis-Mukul RD; Puentes PR; Acar A; Gupta I; Bhowmick J; Li Y; Ghazi A; Wu JY; Unberath M
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1281-1284. PubMed ID: 38704792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Eye-tracking in immersive environments: a general methodology to analyze affordance-based interactions from oculomotor dynamics.
    Renaud P; Décarie J; Gourd SP; Paquin LC; Bouchard S
    Cyberpsychol Behav; 2003 Oct; 6(5):519-26. PubMed ID: 14583127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust eye tracking based on multiple corneal reflections for clinical applications.
    Mestre C; Gautier J; Pujol J
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29500875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amplitude of accommodation for different head positions and different directions of eye gaze.
    Atchison DA; Claydon CA; Irwin SE
    Optom Vis Sci; 1994 May; 71(5):339-45. PubMed ID: 8065710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Instant interaction driven adaptive gaze control interface.
    Qian K; Arichi T; Edwards AD; Hajnal JV
    Sci Rep; 2024 May; 14(1):11661. PubMed ID: 38778122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A low cost human computer interface based on eye tracking.
    Hiley JB; Redekopp AH; Fazel-Rezai R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3226-9. PubMed ID: 17946167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Target selection by gaze pointing and manual confirmation: performance improved by locking the gaze cursor.
    Zhang S; Tian Y; Wang C; Wei K
    Ergonomics; 2020 Jul; 63(7):884-895. PubMed ID: 32348191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual field coordinates of pupillary circular axis and optical axis.
    Atchison DA; Mathur A; Suheimat M; Charman WN
    Optom Vis Sci; 2014 May; 91(5):582-7. PubMed ID: 24727827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pupil Response in Visual Tracking Tasks: The Impacts of Task Load, Familiarity, and Gaze Position.
    Wu Y; Zhang Z; Zhang Y; Zheng B; Aghazadeh F
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of inverting prisms on the horizontal-vertical illusion: a systematic effect of downward gaze.
    Richter HO; Wennberg P; Raudsepp J
    Exp Brain Res; 2007 Oct; 183(1):9-15. PubMed ID: 17609882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping and correcting the influence of gaze position on pupil size measurements.
    Hayes TR; Petrov AA
    Behav Res Methods; 2016 Jun; 48(2):510-27. PubMed ID: 25953668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.