These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9399414)

  • 21. Correlations between response properties of periodontal mechanosensitive neurones in the primary somatosensory cortex of the rabbit and cortically induced rhythmical jaw movements.
    Itoh S; Nishiura H; Tabata T; Watanabe M
    Arch Oral Biol; 2002 Jun; 47(6):481-90. PubMed ID: 12102765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of reversible bilateral inactivation of face primary motor cortex on mastication and swallowing.
    Yamamura K; Narita N; Yao D; Martin RE; Masuda Y; Sessle BJ
    Brain Res; 2002 Jul; 944(1-2):40-55. PubMed ID: 12106664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns.
    Tsuboi A; Kolta A; Chen CC; Lund JP
    Eur J Neurosci; 2003 Jan; 17(2):229-38. PubMed ID: 12542659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuronal activity patterns in primate primary motor cortex related to trained or semiautomatic jaw and tongue movements.
    Yao D; Yamamura K; Narita N; Martin RE; Murray GM; Sessle BJ
    J Neurophysiol; 2002 May; 87(5):2531-41. PubMed ID: 11976389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation.
    Shin HC; Chapin JK
    Somatosens Mot Res; 1990; 7(4):421-34. PubMed ID: 1963252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis).
    Huang CS; Hiraba H; Murray GM; Sessle BJ
    J Neurophysiol; 1989 Mar; 61(3):635-50. PubMed ID: 2709104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bulbar reticular unit activity during food ingestion in the cat.
    Nakamura Y; Hiraba K; Enomoto S; Sahara Y
    Brain Res; 1982 Dec; 253(1-2):312-6. PubMed ID: 7150971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Input-output relationships of the primary face motor cortex in the monkey (Macaca fascicularis).
    Huang CS; Hiraba H; Sessle BJ
    J Neurophysiol; 1989 Feb; 61(2):350-62. PubMed ID: 2918359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oral-facial and jaw muscle afferent projections to neurons in cat frontal cortex.
    Lund JP; Sessle BJ
    Exp Neurol; 1974 Nov; 45(2):314-31. PubMed ID: 4417428
    [No Abstract]   [Full Text] [Related]  

  • 30. Single-unit activity in bulbar reticular formation during food ingestion in chronic cats.
    Hiraba K; Taira M; Sahara Y; Nakamura Y
    J Neurophysiol; 1988 Oct; 60(4):1333-49. PubMed ID: 3193160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuronal activity in the putamen and the globus pallidus of rabbit during mastication.
    Masuda Y; Kato T; Hidaka O; Matsuo R; Inoue T; Iwata K; Morimoto T
    Neurosci Res; 2001 Jan; 39(1):11-9. PubMed ID: 11164249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-series analyses of mandibular and perioral soft tissue movements during mastication.
    Sakaguchi K; Kawasaki T; Araki O
    J Oral Rehabil; 2003 Mar; 30(3):270-7. PubMed ID: 12588499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of medial bulbar reticular neurons in the orbital cortically induced masticatory rhythm in cats.
    Nakamura Y; Enomoto S; Kato M
    Brain Res; 1980 Nov; 202(1):207-12. PubMed ID: 7427737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis).
    Martin RE; Kemppainen P; Masuda Y; Yao D; Murray GM; Sessle BJ
    J Neurophysiol; 1999 Sep; 82(3):1529-41. PubMed ID: 10482767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of tooth pulp deafferentation on brainstem neurons of the rat trigeminal subnucleus oralis.
    Kwan CL; Hu JW; Sessle BJ
    Somatosens Mot Res; 1993; 10(2):115-31. PubMed ID: 8392239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Levodopa induced ON-OFF motor fluctuations in Parkinson's disease related to rhythmical masticatory jaw movements.
    Karlsson S; Persson M; Johnels B
    J Neurol Neurosurg Psychiatry; 1992 Apr; 55(4):304-7. PubMed ID: 1316430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic basis of orbital cortically induced rhythmical masticatory activity of trigeminal motoneurons in immobilized cats.
    Kubo Y; Enomoto S; Nakamura Y
    Brain Res; 1981 Dec; 230(1-2):97-110. PubMed ID: 7317793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.
    Nakamura Y; Katakura N; Nakajima M
    J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of nociceptive and non-nociceptive neurons in trigeminal subnucleus oralis of the rat.
    Dallel R; Raboisson P; Woda A; Sessle BJ
    Brain Res; 1990 Jun; 521(1-2):95-106. PubMed ID: 2207681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of rapidly adapting neurons in cat primary somatosensory cortex to constant-velocity mechanical stimulation.
    Esteky H; Schwark HD
    J Neurophysiol; 1994 Nov; 72(5):2269-79. PubMed ID: 7884458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.