BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9400365)

  • 41. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
    Kumar S; Nussinov R
    Chembiochem; 2004 Mar; 5(3):280-90. PubMed ID: 14997520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Further characterization of the Krebs tricarboxylic acid cycle metabolon.
    Robinson JB; Inman L; Sumegi B; Srere PA
    J Biol Chem; 1987 Feb; 262(4):1786-90. PubMed ID: 2433288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural features of protein-nucleic acid recognition sites.
    Nadassy K; Wodak SJ; Janin J
    Biochemistry; 1999 Feb; 38(7):1999-2017. PubMed ID: 10026283
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immobilized enzymes as tools for the demonstration of metabolon formation. A short overview.
    Beeckmans S; Van Driessche E; Kanarek L
    J Mol Recognit; 1993 Dec; 6(4):195-204. PubMed ID: 7917415
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of NAD-dependent malate dehydrogenase complexed with NADP(H).
    Tomita T; Fushinobu S; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2005 Aug; 334(2):613-8. PubMed ID: 16009341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nardilysin facilitates complex formation between mitochondrial malate dehydrogenase and citrate synthase.
    Chow KM; Ma Z; Cai J; Pierce WM; Hersh LB
    Biochim Biophys Acta; 2005 May; 1723(1-3):292-301. PubMed ID: 15809022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural basis of substrate specificity in malate dehydrogenases: crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, alpha-ketomalonate and tetrahydoNAD.
    Chapman AD; Cortés A; Dafforn TR; Clarke AR; Brady RL
    J Mol Biol; 1999 Jan; 285(2):703-12. PubMed ID: 10075524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.
    Grandier-Vazeille X; Bathany K; Chaignepain S; Camougrand N; Manon S; Schmitter JM
    Biochemistry; 2001 Aug; 40(33):9758-69. PubMed ID: 11502169
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzyme:nanoparticle bioconjugates with two sequential enzymes: stoichiometry and activity of malate dehydrogenase and citrate synthase on Au nanoparticles.
    Keighron JD; Keating CD
    Langmuir; 2010 Dec; 26(24):18992-9000. PubMed ID: 21114258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Citric-acid cycle key enzyme activities during in vitro growth and metacyclogenesis of Leishmania infantum promastigotes.
    Louassini M; Foulquié M; Benítez R; Adroher J
    J Parasitol; 1999 Aug; 85(4):595-602. PubMed ID: 10461937
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions.
    Zhou GP; Troy FA
    Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Malate dehydrogenases--structure and function.
    Minárik P; Tomásková N; Kollárová M; Antalík M
    Gen Physiol Biophys; 2002 Sep; 21(3):257-65. PubMed ID: 12537350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of a NADH-insensitive hexameric citrate synthase that resists acid inactivation.
    Francois JA; Starks CM; Sivanuntakorn S; Jiang H; Ransome AE; Nam JW; Constantine CZ; Kappock TJ
    Biochemistry; 2006 Nov; 45(45):13487-99. PubMed ID: 17087502
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Endotoxin challenge reduces aconitase activity in myocardial tissue.
    Mason KE; Stofan DA
    Arch Biochem Biophys; 2008 Jan; 469(2):151-6. PubMed ID: 18005658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Association of calcineurin with mitochondrial proteins.
    Tokheim AM; Martin BL
    Proteins; 2006 Jul; 64(1):28-33. PubMed ID: 16639748
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase.
    Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP
    J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.