BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 9400367)

  • 1. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Glu126 and Arg144, two residues that are indispensable for substrate binding in the lactose permease of Escherichia coli.
    Sahin-Tóth M; le Coutre J; Kharabi D; le Maire G; Lee JC; Kaback HR
    Biochemistry; 1999 Jan; 38(2):813-9. PubMed ID: 9888822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximity between Glu126 and Arg144 in the lactose permease of Escherichia coli.
    Zhao M; Zen KC; Hubbell WL; Kaback HR
    Biochemistry; 1999 Jun; 38(23):7407-12. PubMed ID: 10360937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.
    Frillingos S; Ujwal ML; Sun J; Kaback HR
    Protein Sci; 1997 Feb; 6(2):431-7. PubMed ID: 9041646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Persson B; Schwieger J; Cohan P; Kaback HR
    Protein Sci; 1994 Feb; 3(2):240-7. PubMed ID: 8003960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfhydryl oxidation of mutants with cysteine in place of acidic residues in the lactose permease.
    Voss J; Sun J; Venkatesan P; Kaback HR
    Biochemistry; 1998 Jun; 37(22):8191-6. PubMed ID: 9609715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating conformational equilibria in the lactose permease of Escherichia coli.
    Weinglass AB; Sondej M; Kaback HR
    J Mol Biol; 2002 Jan; 315(4):561-71. PubMed ID: 11812130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal antibody 4B1 alters the pKa of a carboxylic acid at position 325 (helix X) of the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Aug; 35(31):10166-71. PubMed ID: 8756481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helix packing in the lactose permease of Escherichia coli determined by site-directed thiol cross-linking: helix I is close to helices V and XI.
    Wang Q; Kaback HR
    Biochemistry; 1999 Mar; 38(10):3120-6. PubMed ID: 10074366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes.
    Zhang W; Guan L; Kaback HR
    J Mol Biol; 2002 Jan; 315(1):53-62. PubMed ID: 11771965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of helix VIII in the lactose permease of Escherichia coli: II. Site-directed sulfhydryl modification.
    Frillingos S; Kaback HR
    Protein Sci; 1997 Feb; 6(2):438-43. PubMed ID: 9041647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli.
    Ermolova NV; Smirnova IN; Kasho VN; Kaback HR
    Biochemistry; 2005 May; 44(21):7669-77. PubMed ID: 15909981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis.
    Wolin CD; Kaback HR
    Biochemistry; 1999 Jun; 38(26):8590-7. PubMed ID: 10387107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced movement of helix X in the lactose permease from Escherichia coli: a fluorescence quenching study.
    Wang Q; Matsushita K; de Foresta B; le Maire M; Kaback HR
    Biochemistry; 1997 Nov; 36(46):14120-7. PubMed ID: 9369484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the conformation of the lactose permease of Escherichia coli by in situ site-directed sulfhydryl modification.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(13):3950-6. PubMed ID: 8672426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.