BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9400694)

  • 1. Chemical characterization and reactivity of iron chelator-treated amphibole asbestos.
    Gold J; Amandusson H; Krozer A; Kasemo B; Ericsson T; Zanetti G; Fubini B
    Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1021-30. PubMed ID: 9400694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyto-genotoxicity of amphibole asbestos fibers in cultured human lung epithelial cell line: role of surface iron.
    Srivastava RK; Lohani M; Pant AB; Rahman Q
    Toxicol Ind Health; 2010 Oct; 26(9):575-82. PubMed ID: 20554628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using in vitro iron deposition on asbestos to model asbestos bodies formed in human lung.
    Shen Z; Bosbach D; Hochella MF; Bish DL; Williams MG; Dodson RF; Aust AE
    Chem Res Toxicol; 2000 Sep; 13(9):913-21. PubMed ID: 10995265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of UICC crocidolite: the effect of conversion of some ferric ions to ferrous ions.
    Gulumian M; Bhoolia DJ; Du Toit RS; Rendall RE; Pollak H; van Wyk JA; Rhempula M
    Environ Res; 1993 Feb; 60(2):193-206. PubMed ID: 8386081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical generation at the solid/liquid interface in iron containing minerals.
    Fubini B; Mollo L; Giamello E
    Free Radic Res; 1995 Dec; 23(6):593-614. PubMed ID: 8574353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of surface free radical activity of respirable industrial fibres using supercoiled phi X174 RF1 plasmid DNA.
    Gilmour PS; Beswick PH; Brown DM; Donaldson K
    Carcinogenesis; 1995 Dec; 16(12):2973-9. PubMed ID: 8603472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron topochemistry and surface reactivity of amphibole asbestos: relations with in vitro toxicity.
    Pacella A; Andreozzi GB; Fournier J; Stievano L; Giantomassi F; Lucarini G; Rippo MR; Pugnaloni A
    Anal Bioanal Chem; 2012 Jan; 402(2):871-81. PubMed ID: 22057722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.
    Turci F; Tomatis M; Gazzano E; Riganti C; Martra G; Bosia A; Ghigo D; Fubini B
    J Toxicol Environ Health A; 2005 Jan; 68(1):21-39. PubMed ID: 15739802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron mobilization from asbestos by chelators and ascorbic acid.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1990 Apr; 278(1):61-4. PubMed ID: 2321970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobilization of iron from crocidolite asbestos by certain chelators results in enhanced crocidolite-dependent oxygen consumption.
    Lund LG; Aust AE
    Arch Biochem Biophys; 1991 May; 287(1):91-6. PubMed ID: 1654807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry and surface reactivity of fibrous amphiboles that are not regulated as asbestos.
    Fantauzzi M; Pacella A; Fournier J; Gianfagna A; Andreozzi GB; Rossi A
    Anal Bioanal Chem; 2012 Aug; 404(3):821-33. PubMed ID: 22763717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of long-term removal of iron from asbestos by desferrioxamine B on subsequent mobilization by other chelators and induction of DNA single-strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1994 Jan; 308(1):64-9. PubMed ID: 8311475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals.
    Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B
    J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical activity of synthetic vitreous fibers: iron chelation inhibits hydroxyl radical generation by refractory ceramic fiber.
    Brown DM; Fisher C; Donaldson K
    J Toxicol Environ Health A; 1998 Apr; 53(7):545-61. PubMed ID: 9561968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos.
    Fantauzzi M; Pacella A; Atzei D; Gianfagna A; Andreozzi GB; Rossi A
    Anal Bioanal Chem; 2010 Apr; 396(8):2889-98. PubMed ID: 20217397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide.
    Weitzman SA; Graceffa P
    Arch Biochem Biophys; 1984 Jan; 228(1):373-6. PubMed ID: 6320737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The release of iron from different asbestos structures by hydrogen peroxide with concomitant O2 generation.
    Ghio AJ; Taylor DE; Stonehuerner JG; Piantadosi CA; Crumbliss AL
    Biometals; 1998 Jan; 11(1):41-7. PubMed ID: 9450316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced generation of free radicals from phagocytes induced by mineral dusts.
    Vallyathan V; Mega JF; Shi X; Dalal NS
    Am J Respir Cell Mol Biol; 1992 Apr; 6(4):404-13. PubMed ID: 1312851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.
    Pollastri S; D'Acapito F; Trapananti A; Colantoni I; Andreozzi GB; Gualtieri AF
    J Hazard Mater; 2015 Nov; 298():282-93. PubMed ID: 26073382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.