These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 9400727)
1. Lung proliferative and clearance responses to inhaled para-aramid RFP in exposed hamsters and rats: comparisons with chrysotile asbestos fibers. Warheit DB; Snajdr SI; Hartsky MA; Frame SR Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1219-22. PubMed ID: 9400727 [TBL] [Abstract][Full Text] [Related]
2. Pulmonary effects in rats inhaling size-separated chrysotile asbestos fibres or p-aramid fibrils: differences in cellular proliferative responses. Warheit DB; Hartsky MA; Frame SR Toxicol Lett; 1996 Nov; 88(1-3):287-92. PubMed ID: 8920750 [TBL] [Abstract][Full Text] [Related]
3. Biodegradability of inhaled para-aramid respirable-sized fiber-shaped particulates: mechanistic in vivo and in vitro studies. Warheit DB; Hartsky MA; Reed KL; Webb TR Toxicol Appl Pharmacol; 2001 Jul; 174(1):78-88. PubMed ID: 11437651 [TBL] [Abstract][Full Text] [Related]
4. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils. Warheit DB; Kellar KA; Hartsky MA Toxicol Appl Pharmacol; 1992 Oct; 116(2):225-39. PubMed ID: 1412467 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the clearance of respirable para-aramid, chrysotile and glass fibres from rat lungs. Searl A Ann Occup Hyg; 1997 Apr; 41(2):217-33. PubMed ID: 9155241 [TBL] [Abstract][Full Text] [Related]
6. The biopersistence of brazilian chrysotile asbestos following inhalation. Bernstein DM; Rogers R; Smith P Inhal Toxicol; 2004; 16(11-12):745-61. PubMed ID: 16036745 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Bernstein DM; Chevalier J; Smith P Inhal Toxicol; 2005 Aug; 17(9):427-49. PubMed ID: 16020039 [TBL] [Abstract][Full Text] [Related]
8. Man-made respirable-sized organic fibers: what do we know about their toxicological profiles? Warheit DB; Reed KL; Webb TR Ind Health; 2001 Apr; 39(2):119-25. PubMed ID: 11341541 [TBL] [Abstract][Full Text] [Related]
9. Comparison of Calidria chrysotile asbestos to pure tremolite: inhalation biopersistence and histopathology following short-term exposure. Bernstein DM; Chevalier J; Smith P Inhal Toxicol; 2003 Dec; 15(14):1387-419. PubMed ID: 14648356 [TBL] [Abstract][Full Text] [Related]
11. Biodegradability of inhaled p-aramid respirable fiber-shaped particulates (RFP): mechanisms of RFP shortening and evidence of reversibility of pulmonary lesions. Warheit DB; Reed KL; Pinkerton KE; Webb TR Toxicol Lett; 2002 Feb; 127(1-3):259-67. PubMed ID: 12052666 [TBL] [Abstract][Full Text] [Related]
12. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Bermudez E; Mangum JB; Wong BA; Asgharian B; Hext PM; Warheit DB; Everitt JI Toxicol Sci; 2004 Feb; 77(2):347-57. PubMed ID: 14600271 [TBL] [Abstract][Full Text] [Related]
13. Deposition, clearance, and shortening of Kevlar para-aramid fibrils in acute, subchronic, and chronic inhalation studies in rats. Kelly DP; Merriman EA; Kennedy GL; Lee KP Fundam Appl Toxicol; 1993 Oct; 21(3):345-54. PubMed ID: 8258388 [TBL] [Abstract][Full Text] [Related]
14. The biopersistence of Canadian chrysotile asbestos following inhalation. Bernstein DM; Rogers R; Smith P Inhal Toxicol; 2003 Nov; 15(13):1247-74. PubMed ID: 14569492 [TBL] [Abstract][Full Text] [Related]
15. The importance of fiber biopersistence and lung dose in determining the chronic inhalation effects of X607, RCF1, and chrysotile asbestos in rats. Hesterberg TW; Hart GA; Chevalier J; Miiller WC; Hamilton RD; Bauer J; Thevenaz P Toxicol Appl Pharmacol; 1998 Nov; 153(1):68-82. PubMed ID: 9875301 [TBL] [Abstract][Full Text] [Related]
16. Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos. BéruBé KA; Quinlan TR; Moulton G; Hemenway D; O'Shaughnessy P; Vacek P; Mossman BT Toxicol Appl Pharmacol; 1996 Mar; 137(1):67-74. PubMed ID: 8607143 [TBL] [Abstract][Full Text] [Related]
17. Biodegradability of inhaled p-aramid respirable fibre-shaped particulates: representative of other synthetic organic fibre-types? Warheit DB; Hartsky MA; Webb TR Int Arch Occup Environ Health; 2000 Jun; 73 Suppl():S75-8. PubMed ID: 10968565 [TBL] [Abstract][Full Text] [Related]
18. The inhalation toxicology of p-aramid fibrils. Donaldson K Crit Rev Toxicol; 2009; 39(6):487-500. PubMed ID: 19545198 [TBL] [Abstract][Full Text] [Related]
19. Biopersistence of inhaled organic and inorganic fibers in the lungs of rats. Warheit DB; Hartsky MA; McHugh TA; Kellar KA Environ Health Perspect; 1994 Oct; 102 Suppl 5(Suppl 5):151-7. PubMed ID: 7882921 [TBL] [Abstract][Full Text] [Related]
20. The toxicological response of Brazilian chrysotile asbestos: a multidose subchronic 90-day inhalation toxicology study with 92-day recovery to assess cellular and pathological response. Bernstein DM; Rogers R; Smith P; Chevalier J Inhal Toxicol; 2006 May; 18(5):313-32. PubMed ID: 16513591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]