These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 9400860)
1. Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. Moore A; Weissleder R; Bogdanov A J Magn Reson Imaging; 1997; 7(6):1140-5. PubMed ID: 9400860 [TBL] [Abstract][Full Text] [Related]
2. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Schulze E; Ferrucci JT; Poss K; Lapointe L; Bogdanova A; Weissleder R Invest Radiol; 1995 Oct; 30(10):604-10. PubMed ID: 8557500 [TBL] [Abstract][Full Text] [Related]
3. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Moore A; Marecos E; Bogdanov A; Weissleder R Radiology; 2000 Feb; 214(2):568-74. PubMed ID: 10671613 [TBL] [Abstract][Full Text] [Related]
4. Magnetically labeled cells can be detected by MR imaging. Weissleder R; Cheng HC; Bogdanova A; Bogdanov A J Magn Reson Imaging; 1997; 7(1):258-63. PubMed ID: 9039625 [TBL] [Abstract][Full Text] [Related]
5. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Raynal I; Prigent P; Peyramaure S; Najid A; Rebuzzi C; Corot C Invest Radiol; 2004 Jan; 39(1):56-63. PubMed ID: 14701989 [TBL] [Abstract][Full Text] [Related]
6. MRI detection of macrophages labeled using micrometer-sized iron oxide particles. Williams JB; Ye Q; Hitchens TK; Kaufman CL; Ho C J Magn Reson Imaging; 2007 Jun; 25(6):1210-8. PubMed ID: 17520727 [TBL] [Abstract][Full Text] [Related]
7. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Song M; Moon WK; Kim Y; Lim D; Song IC; Yoon BW Korean J Radiol; 2007; 8(5):365-71. PubMed ID: 17923778 [TBL] [Abstract][Full Text] [Related]
8. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Rogers WJ; Basu P Atherosclerosis; 2005 Jan; 178(1):67-73. PubMed ID: 15585202 [TBL] [Abstract][Full Text] [Related]
9. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Rainov NG; Zimmer C; Chase M; Kramm CM; Chiocca EA; Weissleder R; Breakefield XO Hum Gene Ther; 1995 Dec; 6(12):1543-52. PubMed ID: 8664379 [TBL] [Abstract][Full Text] [Related]
10. A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. Muldoon LL; Pagel MA; Kroll RA; Roman-Goldstein S; Jones RS; Neuwelt EA AJNR Am J Neuroradiol; 1999 Feb; 20(2):217-22. PubMed ID: 10094341 [TBL] [Abstract][Full Text] [Related]
11. Preclinical assessment of hepatocyte-targeted MR contrast agents in stable human liver cell cultures. Reimer P; Bader A; Weissleder R J Magn Reson Imaging; 1998; 8(3):687-9. PubMed ID: 9626887 [TBL] [Abstract][Full Text] [Related]
12. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. Arbab AS; Wilson LB; Ashari P; Jordan EK; Lewis BK; Frank JA NMR Biomed; 2005 Oct; 18(6):383-9. PubMed ID: 16013087 [TBL] [Abstract][Full Text] [Related]
13. Human transferrin receptor gene as a marker gene for MR imaging. Moore A; Josephson L; Bhorade RM; Basilion JP; Weissleder R Radiology; 2001 Oct; 221(1):244-50. PubMed ID: 11568347 [TBL] [Abstract][Full Text] [Related]
14. Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) in human monocyte-macrophages: implications for magnetic resonance imaging. Müller K; Skepper JN; Tang TY; Graves MJ; Patterson AJ; Corot C; Lancelot E; Thompson PW; Brown AP; Gillard JH Biomaterials; 2008 Jun; 29(17):2656-62. PubMed ID: 18377983 [TBL] [Abstract][Full Text] [Related]
15. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison. Sun R; Dittrich J; Le-Huu M; Mueller MM; Bedke J; Kartenbeck J; Lehmann WD; Krueger R; Bock M; Huss R; Seliger C; Gröne HJ; Misselwitz B; Semmler W; Kiessling F Invest Radiol; 2005 Aug; 40(8):504-13. PubMed ID: 16024988 [TBL] [Abstract][Full Text] [Related]
17. Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide. Schäfer R; Kehlbach R; Wiskirchen J; Bantleon R; Pintaske J; Brehm BR; Gerber A; Wolburg H; Claussen CD; Northoff H Radiology; 2007 Aug; 244(2):514-23. PubMed ID: 17562811 [TBL] [Abstract][Full Text] [Related]
18. MRI of blood volume and cellular uptake of superparamagnetic iron in an animal model of choroidal melanoma. Krause M; Kwong KK; Xiong J; Gragoudas ES; Young LH Ophthalmic Res; 2002; 34(4):241-50. PubMed ID: 12297697 [TBL] [Abstract][Full Text] [Related]
19. In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: implications for cellular therapy. Pawelczyk E; Arbab AS; Chaudhry A; Balakumaran A; Robey PG; Frank JA Stem Cells; 2008 May; 26(5):1366-75. PubMed ID: 18276802 [TBL] [Abstract][Full Text] [Related]