BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 9400999)

  • 1. Loss of heterozygosity on the long arm of human chromosome 7 in sporadic renal cell carcinomas.
    Shridhar V; Sun QC; Miller OJ; Kalemkerian GP; Petros J; Smith DI
    Oncogene; 1997 Nov; 15(22):2727-33. PubMed ID: 9400999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic alterations and instabilities in renal cell carcinomas and their relationship to tumor pathology.
    Thrash-Bingham CA; Salazar H; Freed JJ; Greenberg RE; Tartof KD
    Cancer Res; 1995 Dec; 55(24):6189-95. PubMed ID: 8521412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of heterozygosity studies and deletion mapping identify two putative chromosome 14q tumor suppressor loci in renal oncocytomas.
    Schwerdtle RF; Winterpacht A; Störkel S; Brenner W; Hohenfellner R; Zabel B; Huber C; Decker HJ
    Cancer Res; 1997 Nov; 57(22):5009-12. PubMed ID: 9371493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of heterozygosity at chromosomes 8p, 9p, and 14q is associated with stage and grade of non-papillary renal cell carcinomas.
    Schullerus D; Herbers J; Chudek J; Kanamaru H; Kovacs G
    J Pathol; 1997 Oct; 183(2):151-5. PubMed ID: 9390026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequent loss of heterozygosity in human primary squamous cell and colon carcinomas at 7q31.1: evidence for a broad range tumor suppressor gene.
    Zenklusen JC; Thompson JC; Klein-Szanto AJ; Conti CJ
    Cancer Res; 1995 Mar; 55(6):1347-50. PubMed ID: 7882334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsatellite allelotyping differentiates chromophobe renal cell carcinomas from renal oncocytomas and identifies new genetic changes.
    Nagy A; Buzogany I; Kovacs G
    Histopathology; 2004 Jun; 44(6):542-6. PubMed ID: 15186268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetic evidence for the independent origin of multifocal papillary tumors in patients with papillary renal cell carcinomas.
    Jones TD; Eble JN; Wang M; MacLennan GT; Delahunt B; Brunelli M; Martignoni G; Lopez-Beltran A; Bonsib SM; Ulbright TM; Zhang S; Nigro K; Cheng L
    Clin Cancer Res; 2005 Oct; 11(20):7226-33. PubMed ID: 16243792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of genetic changes at specific genomic sites separates renal oncocytomas from renal cell carcinomas.
    Herbers J; Schullerus D; Chudek J; Bugert P; Kanamaru H; Zeisler J; Ljungberg B; Akhtar M; Kovacs G
    J Pathol; 1998 Jan; 184(1):58-62. PubMed ID: 9582528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations of allelic imbalance of chromosome 14 with adverse prognostic parameters in 148 renal cell carcinomas.
    Béroud C; Fournet JC; Jeanpierre C; Droz D; Bouvier R; Froger D; Chrétien Y; Maréchal JM; Weissenbach J; Junien C
    Genes Chromosomes Cancer; 1996 Dec; 17(4):215-24. PubMed ID: 8946203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequent breakpoints in the region surrounding FRA3B in sporadic renal cell carcinomas.
    Shridhar V; Wang L; Rosati R; Paradee W; Shridhar R; Mullins C; Sakr W; Grignon D; Miller OJ; Sun QC; Petros J; Smith DI
    Oncogene; 1997 Mar; 14(11):1269-77. PubMed ID: 9178887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR-based RFLP screening of the commonly deleted 3p loci in renal cortical neoplasms.
    el-Naggar AK; Batsakis JG; Wang G; Lee MS
    Diagn Mol Pathol; 1993 Dec; 2(4):269-76. PubMed ID: 7906993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristic loss of heterozygosity in chromosome 3P and low frequency of replication errors in sporadic renal cell carcinoma.
    Chino K; Esumi M; Ishida H; Okada K
    J Urol; 1999 Aug; 162(2):614-8. PubMed ID: 10411097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of tumor suppressor loci on chromosome 9 in primary human renal cell carcinomas.
    Cairns P; Tokino K; Eby Y; Sidransky D
    Cancer Res; 1995 Jan; 55(2):224-7. PubMed ID: 7812948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of BHD in sporadic renal tumors.
    Khoo SK; Kahnoski K; Sugimura J; Petillo D; Chen J; Shockley K; Ludlow J; Knapp R; Giraud S; Richard S; Nordenskjöld M; Teh BT
    Cancer Res; 2003 Aug; 63(15):4583-7. PubMed ID: 12907635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular differential diagnosis of renal cell carcinomas by microsatellite analysis.
    Bugert P; Kovacs G
    Am J Pathol; 1996 Dec; 149(6):2081-8. PubMed ID: 8952540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homozygous deletion on chromosome 9p and loss of heterozygosity on 9q, 6p, and 6q in primary human small cell lung cancer.
    Merlo A; Gabrielson E; Mabry M; Vollmer R; Baylin SB; Sidransky D
    Cancer Res; 1994 May; 54(9):2322-6. PubMed ID: 8162574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive correlation between allelic loss at chromosome 14q24-31 and poor prognosis of patients with renal cell carcinoma.
    Kaku H; Ito S; Ebara S; Ouchida M; Nasu Y; Tsushima T; Kumon H; Shimizu K
    Urology; 2004 Jul; 64(1):176-81. PubMed ID: 15245966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allelic loss at 7q31.1 in human primary ovarian carcinomas suggests the existence of a tumor suppressor gene.
    Zenklusen JC; Weitzel JN; Ball HG; Conti CJ
    Oncogene; 1995 Jul; 11(2):359-63. PubMed ID: 7624150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distal nephron renal tumors: microsatellite allelotype.
    Polascik TJ; Cairns P; Epstein JI; Fuzesi L; Ro JY; Marshall FF; Sidransky D; Schoenberg M
    Cancer Res; 1996 Apr; 56(8):1892-5. PubMed ID: 8620510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3, 7, and 17 abnormalities by microsatellite amplification.
    Hughson MD; Bigler S; Dickman K; Kovacs G
    Mod Pathol; 1999 Mar; 12(3):301-9. PubMed ID: 10102616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.