These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9401019)

  • 41. Characterization of the acc operon from the nopaline-type Ti plasmid pTiC58, which encodes utilization of agrocinopines A and B and susceptibility to agrocin 84.
    Kim H; Farrand SK
    J Bacteriol; 1997 Dec; 179(23):7559-72. PubMed ID: 9393724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.
    Zhu Y; Lin EC
    J Bacteriol; 1988 May; 170(5):2352-8. PubMed ID: 2834341
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis.
    Flores S; Flores N; de Anda R; González A; Escalante A; Sigala JC; Gosset G; Bolívar F
    J Mol Microbiol Biotechnol; 2005; 10(1):51-63. PubMed ID: 16491026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Backbone chemical shifts assignments of D-allose binding protein in the free form and in complex with D-allose.
    Castaño D; Millet O
    Biomol NMR Assign; 2011 Apr; 5(1):31-4. PubMed ID: 20711759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the D-allose-mediated regulation of sugar transport in Chinese hamster fibroblasts.
    Germinario RJ; Kristof A; Chang Z; Manuel S
    J Cell Physiol; 1990 Nov; 145(2):318-23. PubMed ID: 2246330
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cyanase operon and cyanate metabolism.
    Anderson PM; Sung YC; Fuchs JA
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):247-52. PubMed ID: 2094285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport of D-allose by isolated fat-cells: an effect of adenosine triphosphate on insulin stimulated transport.
    Loten EG; Regen DM; Park CR
    J Cell Physiol; 1976 Dec; 89(4):651-60. PubMed ID: 1010856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli.
    Rosentel JK; Healy F; Maupin-Furlow JA; Lee JH; Shanmugam KT
    J Bacteriol; 1995 Sep; 177(17):4857-64. PubMed ID: 7665461
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability.
    Rech S; Deppenmeier U; Gunsalus RP
    J Bacteriol; 1995 Feb; 177(4):1023-9. PubMed ID: 7860583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of ribose-5-phosphate isomerase converting D-psicose to D-allose from Thermotoga lettingae TMO.
    Feng Z; Mu W; Jiang B
    Biotechnol Lett; 2013 May; 35(5):719-24. PubMed ID: 23386225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional characterization of the Escherichia coli K-12 yiaMNO transport protein genes.
    Plantinga TH; Van Der Does C; Badia J; Aguilar J; Konings WN; Driessen AJ
    Mol Membr Biol; 2004; 21(1):51-7. PubMed ID: 14668138
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catabolite repression of the citST two-component system in Bacillus subtilis.
    Repizo GD; Blancato VS; Sender PD; Lolkema J; Magni C
    FEMS Microbiol Lett; 2006 Jul; 260(2):224-31. PubMed ID: 16842348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic regulation of the constitutive D-ribose operon in Escherichia coli B/r.
    Abou-Sabé M; Ratner PL
    Biochim Biophys Acta; 1977 Jun; 476(4):321-32. PubMed ID: 195611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Utilization of L-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons.
    Yew WS; Gerlt JA
    J Bacteriol; 2002 Jan; 184(1):302-6. PubMed ID: 11741871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstitution of binding protein-dependent ribose transport in spheroplasts of Escherichia coli K-12.
    Galloway DR; Furlong CE
    Arch Biochem Biophys; 1979 Oct; 197(1):158-62. PubMed ID: 120701
    [No Abstract]   [Full Text] [Related]  

  • 56. On the regulation of D-ribose metabolism in E. coli B-r. II. Chromosomal location and fine structure analysis of the D-ribose permease and D-ribokinase structural genes by P 1 transduction.
    Abou-Sabé M; Richman J
    Mol Gen Genet; 1973 May; 122(4):303-12. PubMed ID: 4577537
    [No Abstract]   [Full Text] [Related]  

  • 57. Mapping of a mutation affecting regulation of iron uptake systems in Escherichia coli K-12.
    Bagg A; Neilands JB
    J Bacteriol; 1985 Jan; 161(1):450-3. PubMed ID: 3918009
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of D-Allose From D-Allulose Using Commercial Immobilized Glucose Isomerase.
    Choi MN; Shin KC; Kim DW; Kim BJ; Park CS; Yeom SJ; Kim YS
    Front Bioeng Biotechnol; 2021; 9():681253. PubMed ID: 34336800
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B.
    Cooper VS; Schneider D; Blot M; Lenski RE
    J Bacteriol; 2001 May; 183(9):2834-41. PubMed ID: 11292803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and Characterization of
    Zhang L; Wang Y; Liu D; Luo L; Wang Y; Ye C
    Front Microbiol; 2018; 9():621. PubMed ID: 29670595
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.