BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9401122)

  • 1. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
    Choi W; Dean RA
    Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea.
    Adachi K; Hamer JE
    Plant Cell; 1998 Aug; 10(8):1361-74. PubMed ID: 9707535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
    Mitchell TK; Dean RA
    Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea.
    Zhao X; Kim Y; Park G; Xu JR
    Plant Cell; 2005 Apr; 17(4):1317-29. PubMed ID: 15749760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration.
    Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH
    Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea.
    Ahn N; Kim S; Choi W; Im KH; Lee YH
    Mol Cells; 2004 Feb; 17(1):166-73. PubMed ID: 15055545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea.
    Park G; Xue C; Zheng L; Lam S; Xu JR
    Mol Plant Microbe Interact; 2002 Mar; 15(3):183-92. PubMed ID: 11952120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of proteins that interact with two regulators of appressorium development, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungus Magnaporthe grisea.
    Kulkarni RD; Dean RA
    Mol Genet Genomics; 2004 Jan; 270(6):497-508. PubMed ID: 14648199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.
    Zhou X; Zhang H; Li G; Shaw B; Xu JR
    PLoS Pathog; 2012 Sep; 8(9):e1002911. PubMed ID: 22969430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea.
    Liu S; Dean RA
    Mol Plant Microbe Interact; 1997 Dec; 10(9):1075-86. PubMed ID: 9390422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition.
    Beckerman JL; Ebbole DJ
    Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
    Xu JR; Hamer JE
    Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea.
    Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea.
    Nishimura M; Park G; Xu JR
    Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration.
    Gu SQ; Li P; Wu M; Hao ZM; Gong XD; Zhang XY; Tian L; Zhang P; Wang Y; Cao ZY; Fan YS; Han JM; Dong JG
    Microbiol Res; 2014 Nov; 169(11):817-23. PubMed ID: 24813304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation.
    Kamakura T; Yamaguchi S; Saitoh K; Teraoka T; Yamaguchi I
    Mol Plant Microbe Interact; 2002 May; 15(5):437-44. PubMed ID: 12036274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea.
    Kawamura C; Moriwaki J; Kimura N; Fujita Y; Fuji S; Hirano T; Koizumi S; Tsuge T
    Mol Plant Microbe Interact; 1997 May; 10(4):446-53. PubMed ID: 9150594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.