BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 9401122)

  • 21. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium.
    Kojima K; Kikuchi T; Takano Y; Oshiro E; Okuno T
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1268-76. PubMed ID: 12481999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea.
    Nishimura M; Fukada J; Moriwaki A; Fujikawa T; Ohashi M; Hibi T; Hayashi N
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1779-86. PubMed ID: 19661696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation.
    Irie T; Matsumura H; Terauchi R; Saitoh H
    Mol Genet Genomics; 2003 Nov; 270(2):181-9. PubMed ID: 12955499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity.
    Froeliger EH; Carpenter BE
    Mol Gen Genet; 1996 Jul; 251(6):647-56. PubMed ID: 8757395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.
    Talbot NJ; Ebbole DJ; Hamer JE
    Plant Cell; 1993 Nov; 5(11):1575-90. PubMed ID: 8312740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis.
    Sweigard JA; Carroll AM; Farrall L; Chumley FG; Valent B
    Mol Plant Microbe Interact; 1998 May; 11(5):404-12. PubMed ID: 9574508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP Restores Appressorium Formation Inhibited by Polyamines in Magnaporthe grisea.
    Choi WB; Kang SH; Lee YW; Lee YH
    Phytopathology; 1998 Jan; 88(1):58-62. PubMed ID: 18945000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea.
    Odenbach D; Breth B; Thines E; Weber RW; Anke H; Foster AJ
    Mol Microbiol; 2007 Apr; 64(2):293-307. PubMed ID: 17378924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization.
    Lu JP; Liu TB; Lin FC
    FEMS Microbiol Lett; 2005 Apr; 245(1):131-7. PubMed ID: 15796990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning.
    Zhu H; Choi S; Johnston AK; Wing RA; Dean RA
    Fungal Genet Biol; 1997 Jun; 21(3):337-47. PubMed ID: 9290247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation.
    McCafferty HR; Talbot NJ
    Curr Genet; 1998 May; 33(5):352-61. PubMed ID: 9618586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis.
    Takano Y; Kikuchi T; Kubo Y; Hamer JE; Mise K; Furusawa I
    Mol Plant Microbe Interact; 2000 Apr; 13(4):374-83. PubMed ID: 10755300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae.
    Ye W; Chen X; Zhong Z; Chen M; Shi L; Zheng H; Lin Y; Zhang D; Lu G; Li G; Chen J; Wang Z
    Fungal Genet Biol; 2014 Jun; 67():37-50. PubMed ID: 24731806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea.
    Dixon KP; Xu JR; Smirnoff N; Talbot NJ
    Plant Cell; 1999 Oct; 11(10):2045-58. PubMed ID: 10521531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea.
    Park G; Xue C; Zhao X; Kim Y; Orbach M; Xu JR
    Plant Cell; 2006 Oct; 18(10):2822-35. PubMed ID: 17056708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea.
    Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel gene MGA1 is required for appressorium formation in Magnaporthe grisea.
    Gupta A; Chattoo BB
    Fungal Genet Biol; 2007 Nov; 44(11):1157-69. PubMed ID: 17462923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.