These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 9401422)

  • 1. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8-22 years of age.
    Oades RD; Dittmann-Balcar A; Zerbin D
    Psychophysiology; 1997 Nov; 34(6):677-93. PubMed ID: 9401422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory event-related potential (ERP) and difference-wave topography in schizophrenic patients with/without active hallucinations and delusions: a comparison with young obsessive-compulsive disorder (OCD) and healthy subjects.
    Oades RD; Zerbin D; Dittmann-Balcar A; Eggers C
    Int J Psychophysiol; 1996; 22(3):185-214. PubMed ID: 8835626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory event-related potentials (ERPs) and mismatch negativity (MMN) in healthy children and those with attention-deficit or tourette/tic symptoms.
    Oades RD; Dittmann-Balcar A; Schepker R; Eggers C; Zerbin D
    Biol Psychol; 1996 Apr; 43(2):163-85. PubMed ID: 8805970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological correlates of selective attention: a lifespan comparison.
    Mueller V; Brehmer Y; von Oertzen T; Li SC; Lindenberger U
    BMC Neurosci; 2008 Jan; 9():18. PubMed ID: 18237433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The topography of event-related potentials in passive and active conditions of a 3-tone auditory oddball test.
    Oades RD; Zerbin D; Dittmann-Balcar A
    Int J Neurosci; 1995 Apr; 81(3-4):249-64. PubMed ID: 7628914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aging on event-related brain potentials and reaction times in an auditory oddball task.
    Iragui VJ; Kutas M; Mitchiner MR; Hillyard SA
    Psychophysiology; 1993 Jan; 30(1):10-22. PubMed ID: 8416055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related changes in child and adolescent event-related potential component morphology, amplitude and latency to standard and target stimuli in an auditory oddball task.
    Johnstone SJ; Barry RJ; Anderson JW; Coyle SF
    Int J Psychophysiol; 1996 Dec; 24(3):223-38. PubMed ID: 8993997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The topography of 4 subtraction ERP-waveforms derived from a 3-tone auditory oddball task in healthy young adults.
    Oades RD; Dittmann-Balcar A; Zerbin D
    Int J Neurosci; 1995 Apr; 81(3-4):265-81. PubMed ID: 7628915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spatio-temporal dynamics of deviance and target detection in the passive and active auditory oddball paradigm: a sLORETA study.
    Justen C; Herbert C
    BMC Neurosci; 2018 Apr; 19(1):25. PubMed ID: 29673322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of early auditory processing during selective listening to rapidly presented tones.
    Woldorff MG; Hillyard SA
    Electroencephalogr Clin Neurophysiol; 1991 Sep; 79(3):170-91. PubMed ID: 1714809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values.
    Tomé D; Barbosa F; Nowak K; Marques-Teixeira J
    J Neural Transm (Vienna); 2015 Mar; 122(3):375-91. PubMed ID: 24961573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multichannel auditory event-related brain potentials: effects of normal aging on the scalp distribution of N1, P2, N2 and P300 latencies and amplitudes.
    Anderer P; Semlitsch HV; Saletu B
    Electroencephalogr Clin Neurophysiol; 1996 Nov; 99(5):458-72. PubMed ID: 9020805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI study.
    Sabri M; Liebenthal E; Waldron EJ; Medler DA; Binder JR
    J Cogn Neurosci; 2006 May; 18(5):689-700. PubMed ID: 16768370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Late cognitive event-related potentials in adult Down's syndrome.
    Vieregge P; Verleger R; Schulze-Rava H; Kömpf D
    Biol Psychiatry; 1992 Dec; 32(12):1118-34. PubMed ID: 1477192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of cortical sound processing as indexed by event-related potentials.
    Ceponiene R; Rinne T; Näätänen R
    Clin Neurophysiol; 2002 Jun; 113(6):870-82. PubMed ID: 12048046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in evoked potentials during the active processing of sound location and motion.
    Richter N; Schröger E; Rübsamen R
    Neuropsychologia; 2013 Jun; 51(7):1204-14. PubMed ID: 23499852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender-specific development of auditory information processing in children: an ERP study.
    Nanova P; Lyamova L; Hadjigeorgieva M; Kolev V; Yordanova J
    Clin Neurophysiol; 2008 Sep; 119(9):1992-2003. PubMed ID: 18579438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory ERPs to non-target stimuli in schizophrenia: relationship to probability, task-demands, and target ERPs.
    O'Donnell BF; Hokama H; McCarley RW; Smith RS; Salisbury DF; Mondrow E; Nestor PG; Shenton ME
    Int J Psychophysiol; 1994 Aug; 17(3):219-31. PubMed ID: 7806466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.