These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 940146)

  • 1. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions.
    Nagle JF
    J Membr Biol; 1976; 27(3):233-50. PubMed ID: 940146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lecithin bilayers. Density measurement and molecular interactions.
    Nagle JF; Wilkinson DA
    Biophys J; 1978 Aug; 23(2):159-75. PubMed ID: 687759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence.
    Chen L; Johnson ML; Biltonen RL
    Biophys J; 2001 Jan; 80(1):254-70. PubMed ID: 11159399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transitions in lipid bilayers. A theoretical model for phosphatidylethanolamine and phosphatidic acid bilayers.
    Scott HL
    Biochim Biophys Acta; 1981 Nov; 648(2):129-36. PubMed ID: 7306535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theory of phase transitions and phase diagrams for one- and two-component phospholipid bilayers.
    Jacobs RE; Hudson BS; Andersen HC
    Biochemistry; 1977 Oct; 16(20):4349-59. PubMed ID: 911760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of basic protein from human central nervous system myelin on lipid bilayer structure.
    Boggs JM; Moscarello MA
    J Membr Biol; 1978 Feb; 39(1):75-96. PubMed ID: 204786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae.
    Cevc G
    Biochim Biophys Acta; 1991 Feb; 1062(1):59-69. PubMed ID: 1998710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific heats of lipid dispersions in single phase regions.
    Wilkinson DA; Nagle JF
    Biochim Biophys Acta; 1982 May; 688(1):107-15. PubMed ID: 7093266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of the phase transitions of phospholipid bilayers and monolayers.
    Blume A
    Biochim Biophys Acta; 1979 Oct; 557(1):32-44. PubMed ID: 549642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of proteins on thermotropic phase transitions of phospholipid membranes.
    Papahadjopoulos D; Moscarello M; Eylar EH; Isac T
    Biochim Biophys Acta; 1975 Sep; 401(3):317-35. PubMed ID: 52374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy potential for aggregation of giant, neutral lipid bilayer vesicles by Van der Waals attraction.
    Evans E; Metcalfe M
    Biophys J; 1984 Sep; 46(3):423-6. PubMed ID: 6487740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent modification of forces between lecithin bilayers.
    LeNeveu DM; Rand RP; Gingell D; Parsegian VA
    Science; 1976 Jan; 191(4225):399-400. PubMed ID: 1246623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-lipid interactions in bilayer membranes: a lattice model.
    Pink DA; Chapman D
    Proc Natl Acad Sci U S A; 1979 Apr; 76(4):1542-6. PubMed ID: 286996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine.
    Térová B; Heczko R; Slotte JP
    Biophys J; 2005 Apr; 88(4):2661-9. PubMed ID: 15653729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.