These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 9401587)
1. Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Tonkonogi M; Sahlin K Acta Physiol Scand; 1997 Nov; 161(3):345-53. PubMed ID: 9401587 [TBL] [Abstract][Full Text] [Related]
2. Effect of short-term training on mitochondrial ATP production rate in human skeletal muscle. Starritt EC; Angus D; Hargreaves M J Appl Physiol (1985); 1999 Feb; 86(2):450-4. PubMed ID: 9931175 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise. Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569 [TBL] [Abstract][Full Text] [Related]
4. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Jacobs RA; Lundby C J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957 [TBL] [Abstract][Full Text] [Related]
5. Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. Wibom R; Hultman E; Johansson M; Matherei K; Constantin-Teodosiu D; Schantz PG J Appl Physiol (1985); 1992 Nov; 73(5):2004-10. PubMed ID: 1474078 [TBL] [Abstract][Full Text] [Related]
6. Slow component of [V]O(2) kinetics: the effect of training status, fibre type, UCP3 mRNA and citrate synthase activity. Russell A; Wadley G; Snow R; Giacobino JP; Muzzin P; Garnham A; Cameron-Smith D Int J Obes Relat Metab Disord; 2002 Feb; 26(2):157-64. PubMed ID: 11850746 [TBL] [Abstract][Full Text] [Related]
7. The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. Perry CG; Talanian JL; Heigenhauser GJ; Spriet LL J Appl Physiol (1985); 2007 Mar; 102(3):1022-7. PubMed ID: 17170202 [TBL] [Abstract][Full Text] [Related]
8. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295 [TBL] [Abstract][Full Text] [Related]
9. The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise. Sahlin K; Mogensen M; Bagger M; Fernström M; Pedersen PK Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E223-30. PubMed ID: 16926382 [TBL] [Abstract][Full Text] [Related]
10. Circuit resistance training in chronic heart failure improves skeletal muscle mitochondrial ATP production rate--a randomized controlled trial. Williams AD; Carey MF; Selig S; Hayes A; Krum H; Patterson J; Toia D; Hare DL J Card Fail; 2007 Mar; 13(2):79-85. PubMed ID: 17395046 [TBL] [Abstract][Full Text] [Related]
11. The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity. Love LK; LeBlanc PJ; Inglis JG; Bradley NS; Choptiany J; Heigenhauser GJ; Peters SJ J Appl Physiol (1985); 2011 Aug; 111(2):427-34. PubMed ID: 21596918 [TBL] [Abstract][Full Text] [Related]
12. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Tang JE; Hartman JW; Phillips SM Appl Physiol Nutr Metab; 2006 Oct; 31(5):495-501. PubMed ID: 17111003 [TBL] [Abstract][Full Text] [Related]
13. Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Wang H; Hiatt WR; Barstow TJ; Brass EP Eur J Appl Physiol Occup Physiol; 1999 Jun; 80(1):22-7. PubMed ID: 10367719 [TBL] [Abstract][Full Text] [Related]
14. Muscle fiber composition and respiratory capacity in triathletes. Flynn MG; Costill DL; Kirwan JP; Fink WJ; Dengel DR Int J Sports Med; 1987 Dec; 8(6):383-6. PubMed ID: 3429082 [TBL] [Abstract][Full Text] [Related]
15. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists. van der Zwaard S; de Ruiter CJ; Noordhof DA; Sterrenburg R; Bloemers FW; de Koning JJ; Jaspers RT; van der Laarse WJ J Appl Physiol (1985); 2016 Sep; 121(3):636-45. PubMed ID: 27445298 [TBL] [Abstract][Full Text] [Related]
16. ATP production rate in mitochondria isolated from microsamples of human muscle. Wibom R; Hultman E Am J Physiol; 1990 Aug; 259(2 Pt 1):E204-9. PubMed ID: 2382713 [TBL] [Abstract][Full Text] [Related]
17. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans. Barstow TJ; Jones AM; Nguyen PH; Casaburi R Exp Physiol; 2000 Jan; 85(1):109-16. PubMed ID: 10662900 [TBL] [Abstract][Full Text] [Related]
19. Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Østergård T; Andersen JL; Nyholm B; Lund S; Nair KS; Saltin B; Schmitz O Am J Physiol Endocrinol Metab; 2006 May; 290(5):E998-1005. PubMed ID: 16352678 [TBL] [Abstract][Full Text] [Related]
20. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans. Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]