These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9401589)

  • 61. Coordination of fore and hind leg stepping in cats on a transversely-split treadmill.
    Akay T; McVea DA; Tachibana A; Pearson KG
    Exp Brain Res; 2006 Nov; 175(2):211-22. PubMed ID: 16733696
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Is the psoas a hip flexor in the active straight leg raise?
    Hu H; Meijer OG; van Dieën JH; Hodges PW; Bruijn SM; Strijers RL; Nanayakkara PW; van Royen BJ; Wu WH; Xia C
    Eur Spine J; 2011 May; 20(5):759-65. PubMed ID: 20625774
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional subdivision of fin protractor and retractor muscles underlies pelvic fin walking in the African lungfish Protopterus annectens.
    Aiello BR; King HM; Hale ME
    J Exp Biol; 2014 Oct; 217(Pt 19):3474-82. PubMed ID: 25104761
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?
    Armour Smith J; Kulig K
    J Electromyogr Kinesiol; 2015 Jun; 25(3):431-7. PubMed ID: 25648579
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The musculoskeletal system of humans is not tuned to maximize the economy of locomotion.
    Carrier DR; Anders C; Schilling N
    Proc Natl Acad Sci U S A; 2011 Nov; 108(46):18631-6. PubMed ID: 22065766
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interlimb and Intralimb Coordination of Rectus Femoris and Biceps Femoris Muscles at Different Running Speeds.
    Kakehata G; Goto Y; Yokoyama H; Iso S; Kanosue K
    Med Sci Sports Exerc; 2023 May; 55(5):945-956. PubMed ID: 36728765
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Trunk muscles activation during pole walking vs. walking performed at different speeds and grades.
    Zoffoli L; Lucertini F; Federici A; Ditroilo M
    Gait Posture; 2016 May; 46():57-62. PubMed ID: 27131178
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Leg intramuscular pressures during locomotion in humans.
    Ballard RE; Watenpaugh DE; Breit GA; Murthy G; Holley DC; Hargens AR
    J Appl Physiol (1985); 1998 Jun; 84(6):1976-81. PubMed ID: 9609792
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds.
    Prentice SD; Patla AE; Stacey DA
    Exp Brain Res; 1998 Dec; 123(4):474-80. PubMed ID: 9870606
    [TBL] [Abstract][Full Text] [Related]  

  • 70. EMG activity during positive-pressure treadmill running.
    Hunter I; Seeley MK; Hopkins JT; Carr C; Franson JJ
    J Electromyogr Kinesiol; 2014 Jun; 24(3):348-52. PubMed ID: 24613660
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of wearing lower leg compression sleeves on locomotion economy.
    Kurz E; Anders C
    J Sports Sci; 2018 Sep; 36(18):2105-2110. PubMed ID: 29447545
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Muscle force distribution during forward and backward locomotion.
    Błażkiewicz M
    Acta Bioeng Biomech; 2013; 15(3):3-9. PubMed ID: 24215105
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Running perturbations reveal general strategies for step frequency selection.
    Snyder KL; Snaterse M; Donelan JM
    J Appl Physiol (1985); 2012 Apr; 112(8):1239-47. PubMed ID: 22241053
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of locomotion speed on biomechanical subtask and muscle synergy.
    Gui K; Zhang D
    J Electromyogr Kinesiol; 2016 Oct; 30():209-15. PubMed ID: 27517668
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Understanding the Muscle Activity Pattern of the Hip Flexors during Straight Leg Raising in Healthy Subjects.
    Yamane M; Aoki M; Sasaki Y; Kawaji H
    Prog Rehabil Med; 2019; 4():20190007. PubMed ID: 32789254
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Measurement of muscle length-related electromyography activity of the hip flexor muscles to determine individual muscle contributions to the hip flexion torque.
    Jiroumaru T; Kurihara T; Isaka T
    Springerplus; 2014; 3():624. PubMed ID: 25392794
    [TBL] [Abstract][Full Text] [Related]  

  • 77. How is the normal locomotor program modified to produce backward walking?
    Thorstensson A
    Exp Brain Res; 1986; 61(3):664-8. PubMed ID: 3956625
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Speed-dependent and mode-dependent modulations of spatiotem-poral modules in human locomotion extracted via tensor decom-position.
    Takiyama K; Yokoyama H; Kaneko N; Nakazawa K
    Sci Rep; 2020 Jan; 10(1):680. PubMed ID: 31959831
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fatigue induces altered spatial myoelectric activation patterns in the medial gastrocnemius during locomotion.
    Schlink BR; Nordin AD; Brooks CN; Ferris DP
    J Neurophysiol; 2021 May; 125(5):2013-2023. PubMed ID: 33909489
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Walking speed, hip muscles strength, aerobic capacity, and self-perceived locomotion ability most explain walking confidence after stroke: a cross-sectional experimental study.
    Avelino PR; Menezes KKP; Nascimento LR; Alvarenga MTM; de Paula Magalhães J; Teixeira-Salmela LF; Scianni AA
    Int J Rehabil Res; 2022 Dec; 45(4):350-354. PubMed ID: 36237144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.