These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 9401596)

  • 21. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study.
    Nagel M; Sprenger A; Zapf S; Erdmann C; Kömpf D; Heide W; Binkofski F; Lencer R
    Neuroimage; 2006 Feb; 29(4):1319-25. PubMed ID: 16216531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical control of saccades and fixation in man. A PET study.
    Anderson TJ; Jenkins IH; Brooks DJ; Hawken MB; Frackowiak RS; Kennard C
    Brain; 1994 Oct; 117 ( Pt 5)():1073-84. PubMed ID: 7953589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades.
    Bodis-Wollner I; Bucher SF; Seelos KC; Paulus W; Reiser M; Oertel WH
    Neurology; 1997 Aug; 49(2):416-20. PubMed ID: 9270570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
    Connolly JD; Goodale MA; DeSouza JF; Menon RS; Vilis T
    J Neurophysiol; 2000 Sep; 84(3):1645-55. PubMed ID: 10980034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frontoparietal activation with preparation for antisaccades.
    Brown MR; Vilis T; Everling S
    J Neurophysiol; 2007 Sep; 98(3):1751-62. PubMed ID: 17596416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TMS over human frontal eye fields disrupts trans-saccadic memory of multiple objects.
    Prime SL; Vesia M; Crawford JD
    Cereb Cortex; 2010 Apr; 20(4):759-72. PubMed ID: 19641017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades.
    Brown JW; Bullock D; Grossberg S
    Neural Netw; 2004 May; 17(4):471-510. PubMed ID: 15109680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A H(2)(15)O positron emission tomography study on mental imagery of movement sequences--the effect of modulating sequence length and direction.
    Boecker H; Ceballos-Baumann AO; Bartenstein P; Dagher A; Forster K; Haslinger B; Brooks DJ; Schwaiger M; Conrad B
    Neuroimage; 2002 Oct; 17(2):999-1009. PubMed ID: 12377173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of electromagnetic stimulation of the posterior parietal cortex on eye movements.
    Elkington PT; Kerr GK; Stein JS
    Eye (Lond); 1992; 6 ( Pt 5)():510-4. PubMed ID: 1286717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional magnetic resonance imaging studies of eye movements in first episode schizophrenia: smooth pursuit, visually guided saccades and the oculomotor delayed response task.
    Keedy SK; Ebens CL; Keshavan MS; Sweeney JA
    Psychiatry Res; 2006 Apr; 146(3):199-211. PubMed ID: 16571373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of saccade inhibition processes: rapid event-related fMRI of saccades and nogo trials.
    Brown MR; Vilis T; Everling S
    Neuroimage; 2008 Jan; 39(2):793-804. PubMed ID: 17977025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of fixation and saccades during an anti-saccade task: an investigation in humans with chronic lesions of oculomotor cortex.
    Machado L; Rafal RD
    Exp Brain Res; 2004 May; 156(1):55-63. PubMed ID: 14685809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions.
    Baumann O; Ziemus B; Luerding R; Schuierer G; Bogdahn U; Greenlee MW
    Exp Brain Res; 2007 Aug; 181(2):237-47. PubMed ID: 17372726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frontal eye field signals that may trigger the brainstem saccade generator.
    Keller EL; Lee BT; Lee KM
    Prog Brain Res; 2008; 171():107-14. PubMed ID: 18718288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eye-hand coordination during reaching. II. An analysis of the relationships between visuomanual signals in parietal cortex and parieto-frontal association projections.
    Battaglia-Mayer A; Ferraina S; Genovesio A; Marconi B; Squatrito S; Molinari M; Lacquaniti F; Caminiti R
    Cereb Cortex; 2001 Jun; 11(6):528-44. PubMed ID: 11375914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effect of context on saccade-related behavior and brain activity.
    Dyckman KA; Camchong J; Clementz BA; McDowell JE
    Neuroimage; 2007 Jul; 36(3):774-84. PubMed ID: 17478104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Executive control of gaze by the frontal lobes.
    Schall JD; Boucher L
    Cogn Affect Behav Neurosci; 2007 Dec; 7(4):396-412. PubMed ID: 18189013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional anatomy of a prelearned sequence of horizontal saccades in humans.
    Petit L; Orssaud C; Tzourio N; Crivello F; Berthoz A; Mazoyer B
    J Neurosci; 1996 Jun; 16(11):3714-26. PubMed ID: 8642414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct Sources of Variability Affect Eye Movement Preparation.
    Khanna SB; Snyder AC; Smith MA
    J Neurosci; 2019 Jun; 39(23):4511-4526. PubMed ID: 30914447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guided saccades modulate object and face-specific activity in the fusiform gyrus.
    Morris JP; McCarthy G
    Hum Brain Mapp; 2007 Aug; 28(8):691-702. PubMed ID: 17133398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.