These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 9402065)
1. The crystal structure of a type I cohesin domain at 1.7 A resolution. Tavares GA; Béguin P; Alzari PM J Mol Biol; 1997 Oct; 273(3):701-13. PubMed ID: 9402065 [TBL] [Abstract][Full Text] [Related]
2. Insights into the structural determinants of cohesin-dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. Carvalho AL; Pires VM; Gloster TM; Turkenburg JP; Prates JA; Ferreira LM; Romão MJ; Davies GJ; Fontes CM; Gilbert HJ J Mol Biol; 2005 Jun; 349(5):909-15. PubMed ID: 15913653 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. Spinelli S; Fiérobe HP; Belaïch A; Belaïch JP; Henrissat B; Cambillau C J Mol Biol; 2000 Nov; 304(2):189-200. PubMed ID: 11080455 [TBL] [Abstract][Full Text] [Related]
4. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Béguin P; Lemaire M Crit Rev Biochem Mol Biol; 1996 Jun; 31(3):201-36. PubMed ID: 8817076 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Adams JJ; Webb BA; Spencer HL; Smith SP Biochemistry; 2005 Feb; 44(6):2173-82. PubMed ID: 15697243 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. Noach I; Frolow F; Jakoby H; Rosenheck S; Shimon LW; Lamed R; Bayer EA J Mol Biol; 2005 Apr; 348(1):1-12. PubMed ID: 15808849 [TBL] [Abstract][Full Text] [Related]
7. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Pagès S; Bélaïch A; Bélaïch JP; Morag E; Lamed R; Shoham Y; Bayer EA Proteins; 1997 Dec; 29(4):517-27. PubMed ID: 9408948 [TBL] [Abstract][Full Text] [Related]
8. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. Lytle BL; Volkman BF; Westler WM; Heckman MP; Wu JH J Mol Biol; 2001 Mar; 307(3):745-53. PubMed ID: 11273698 [TBL] [Abstract][Full Text] [Related]
9. Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis. Karpol A; Barak Y; Lamed R; Shoham Y; Bayer EA Biochem J; 2008 Mar; 410(2):331-8. PubMed ID: 18021074 [TBL] [Abstract][Full Text] [Related]
10. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components. Adams JJ; Currie MA; Ali S; Bayer EA; Jia Z; Smith SP J Mol Biol; 2010 Mar; 396(4):833-9. PubMed ID: 20070943 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. Chitayat S; Gregg K; Adams JJ; Ficko-Blean E; Bayer EA; Boraston AB; Smith SP J Mol Biol; 2008 Jan; 375(1):20-8. PubMed ID: 17999932 [TBL] [Abstract][Full Text] [Related]
12. Cohesin diversity revealed by the crystal structure of the anchoring cohesin from Ruminococcus flavefaciens. Alber O; Noach I; Rincon MT; Flint HJ; Shimon LJ; Lamed R; Frolow F; Bayer EA Proteins; 2009 Nov; 77(3):699-709. PubMed ID: 19544570 [TBL] [Abstract][Full Text] [Related]
13. Unusual binding properties of the dockerin module of Clostridium thermocellum endoglucanase CelJ (Cel9D-Cel44A). Sakka K; Kishino Y; Sugihara Y; Jindou S; Sakka M; Inagaki M; Kimura T; Sakka K FEMS Microbiol Lett; 2009 Nov; 300(2):249-55. PubMed ID: 19811541 [TBL] [Abstract][Full Text] [Related]
14. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Shimon LJ; Bayer EA; Morag E; Lamed R; Yaron S; Shoham Y; Frolow F Structure; 1997 Mar; 5(3):381-90. PubMed ID: 9083107 [TBL] [Abstract][Full Text] [Related]
15. Cohesin-dockerin interaction in cellulosome assembly: a single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding. Handelsman T; Barak Y; Nakar D; Mechaly A; Lamed R; Shoham Y; Bayer EA FEBS Lett; 2004 Aug; 572(1-3):195-200. PubMed ID: 15304347 [TBL] [Abstract][Full Text] [Related]
16. Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications. Craig SJ; Foong FC; Nordon R J Biotechnol; 2006 Jan; 121(2):165-73. PubMed ID: 16111782 [TBL] [Abstract][Full Text] [Related]
17. Probing the mechanism of cellulosome attachment to the Clostridium thermocellum cell surface: computer simulation of the Type II cohesin-dockerin complex and its variants. Xu J; Smith JC Protein Eng Des Sel; 2010 Oct; 23(10):759-68. PubMed ID: 20682763 [TBL] [Abstract][Full Text] [Related]
19. Analysis of cohesin-dockerin interactions using mutant dockerin proteins. Sakka K; Sugihara Y; Jindou S; Sakka M; Inagaki M; Sakka K; Kimura T FEMS Microbiol Lett; 2011 Jan; 314(1):75-80. PubMed ID: 21054503 [TBL] [Abstract][Full Text] [Related]
20. Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Schaeffer F; Matuschek M; Guglielmi G; Miras I; Alzari PM; Béguin P Biochemistry; 2002 Feb; 41(7):2106-14. PubMed ID: 11841200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]