These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9403107)

  • 21. Cloning, sequencing and mutagenesis of the genes for aromatic amine dehydrogenase from Alcaligenes faecalis and evolution of amine dehydrogenases.
    Chistoserdov AY
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2195-2202. PubMed ID: 11495996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.
    de Boer AP; van der Oost J; Reijnders WN; Westerhoff HV; Stouthamer AH; van Spanning RJ
    Eur J Biochem; 1996 Dec; 242(3):592-600. PubMed ID: 9022686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-dependent semiquinone formation by methylamine dehydrogenase from Paracoccus denitrificans. Evidence for intermolecular electron transfer between quinone cofactors.
    Davidson VL; Jones LH; Kumar MA
    Biochemistry; 1990 Dec; 29(48):10786-91. PubMed ID: 2271681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox properties of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans.
    Fujieda N; Mori M; Kano K; Ikeda T
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):289-96. PubMed ID: 12686147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth.
    Van Spanning RJ; Wansell CW; De Boer T; Hazelaar MJ; Anazawa H; Harms N; Oltmann LF; Stouthamer AH
    J Bacteriol; 1991 Nov; 173(21):6948-61. PubMed ID: 1657871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preliminary crystal structure studies of a ternary electron transfer complex between a quinoprotein, a blue copper protein, and a c-type cytochrome.
    Chen L; Mathews FS; Davidson VL; Tegoni M; Rivetti C; Rossi GL
    Protein Sci; 1993 Feb; 2(2):147-54. PubMed ID: 8382992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1.
    Davidson VL; Kumar MA
    Biochim Biophys Acta; 1990 Apr; 1016(3):339-43. PubMed ID: 2331476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo.
    Page MD; Ferguson SJ
    Mol Microbiol; 1997 Jun; 24(5):977-90. PubMed ID: 9220005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutants of Methylobacterium extorquens and Paracoccus denitrificans deficient in c-type cytochrome biogenesis synthesise the methylamine-dehydrogenase polypeptides but cannot assemble the tryptophan-tryptophylquinone group.
    Page MD; Ferguson SJ
    Eur J Biochem; 1993 Dec; 218(2):711-7. PubMed ID: 8269962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1-NS.
    Chistoserdov AY; McIntire WS; Mathews FS; Lidstrom ME
    J Bacteriol; 1994 Jul; 176(13):4073-80. PubMed ID: 8021188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refined crystal structure of methylamine dehydrogenase from Paracoccus denitrificans at 1.75 A resolution.
    Chen L; Doi M; Durley RC; Chistoserdov AY; Lidstrom ME; Davidson VL; Mathews FS
    J Mol Biol; 1998 Feb; 276(1):131-49. PubMed ID: 9514722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transfer from the aminosemiquinone reaction intermediate of methylamine dehydrogenase to amicyanin.
    Bishop GR; Davidson VL
    Biochemistry; 1998 Aug; 37(31):11026-32. PubMed ID: 9692997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amicyanin transfers electrons from methylamine dehydrogenase to cytochrome c-551i via a ping-pong mechanism, not a ternary complex.
    Meschi F; Wiertz F; Klauss L; Cavalieri C; Blok A; Ludwig B; Heering HA; Merli A; Rossi GL; Ubbink M
    J Am Chem Soc; 2010 Oct; 132(41):14537-45. PubMed ID: 20873742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutation of alphaPhe55 of methylamine dehydrogenase alters the reorganization energy and electronic coupling for its electron transfer reaction with amicyanin.
    Sun D; Chen ZW; Mathews FS; Davidson VL
    Biochemistry; 2002 Nov; 41(47):13926-33. PubMed ID: 12437349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans.
    Gray KA; Davidson VL; Knaff DB
    J Biol Chem; 1988 Oct; 263(28):13987-90. PubMed ID: 3170535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural comparison of crystal and solution states of the 138 kDa complex of methylamine dehydrogenase and amicyanin from Paracoccus versutus.
    Cavalieri C; Biermann N; Vlasie MD; Einsle O; Merli A; Ferrari D; Rossi GL; Ubbink M
    Biochemistry; 2008 Jun; 47(25):6560-70. PubMed ID: 18512962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assimilation of methylamine by Paracoccus denitrificans involves formaldehyde transport by a specific carrier.
    Köstler M; Kleiner D
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):1-4. PubMed ID: 2612879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A method for introduction of unmarked mutations in the genome of Paracoccus denitrificans: construction of strains with multiple mutations in the genes encoding periplasmic cytochromes c550, c551i, and c553i.
    Van Spanning RJ; Wansell CW; Reijnders WN; Harms N; Ras J; Oltmann LF; Stouthamer AH
    J Bacteriol; 1991 Nov; 173(21):6962-70. PubMed ID: 1657872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation.
    Wodara C; Bardischewsky F; Friedrich CG
    J Bacteriol; 1997 Aug; 179(16):5014-23. PubMed ID: 9260941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.