BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 9403626)

  • 41. Effects of antiarrhythmics and hypokalemia on the rate adaptation of cardiac repolarization.
    Osadchii OE
    Scand Cardiovasc J; 2018 Aug; 52(4):218-226. PubMed ID: 29798684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of reverse rate-dependent action of cardioactive agents.
    Bányász T; Bárándi L; Harmati G; Virág L; Szentandrássy N; Márton I; Zaza A; Varró A; Nánási PP
    Curr Med Chem; 2011; 18(24):3597-606. PubMed ID: 21774765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts.
    Sabir IN; Fraser JA; Killeen MJ; Grace AA; Huang CL
    Pflugers Arch; 2007 May; 454(2):209-22. PubMed ID: 17295037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frequency-dependent effects of antiarrhythmic drugs on action potential duration and refractoriness of canine cardiac Purkinje fibers.
    Nattel S; Zeng FD
    J Pharmacol Exp Ther; 1984 Apr; 229(1):283-91. PubMed ID: 6707943
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro effects of acute amiodarone and dronedarone on epicardial, endocardial, and M cells of the canine ventricle.
    Moro S; Ferreiro M; Celestino D; Medei E; Elizari MV; Sicouri S
    J Cardiovasc Pharmacol Ther; 2007 Dec; 12(4):314-21. PubMed ID: 18172226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repolarization differences between guinea pig atrial endocardium and epicardium: evidence for a role of Ito.
    Wang ZG; Fermini B; Nattel S
    Am J Physiol; 1991 May; 260(5 Pt 2):H1501-6. PubMed ID: 2035672
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of halothane on action potential configuration in sub-endocardial and sub-epicardial myocytes from normotensive and hypertensive rat left ventricle.
    Rithalia A; Hopkins PM; Harrison SM
    Br J Anaesth; 2003 Apr; 90(4):501-3. PubMed ID: 12644424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency-dependent interactions of mexiletine and quinidine on depolarization and repolarization in canine Purkinje fibers.
    Roden DM; Iansmith DH; Woosley RL
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1218-24. PubMed ID: 2447269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current.
    Lukas A; Antzelevitch C
    Circulation; 1993 Dec; 88(6):2903-15. PubMed ID: 8252704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties.
    Antzelevitch C; Belardinelli L; Zygmunt AC; Burashnikov A; Di Diego JM; Fish JM; Cordeiro JM; Thomas G
    Circulation; 2004 Aug; 110(8):904-10. PubMed ID: 15302796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differences in arrhythmogenicity between the canine right ventricular outflow tract and anteroinferior right ventricle in a model of Brugada syndrome.
    Morita H; Zipes DP; Morita ST; Wu J
    Heart Rhythm; 2007 Jan; 4(1):66-74. PubMed ID: 17198993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of dauricine, quinidine, and sotalol on action potential duration of papillary muscles in vitro.
    Guo DL; Zeng FD; Hu CJ
    Zhongguo Yao Li Xue Bao; 1997 Jul; 18(4):348-50. PubMed ID: 10072920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: effects of ranolazine.
    Sicouri S; Timothy KW; Zygmunt AC; Glass A; Goodrow RJ; Belardinelli L; Antzelevitch C
    Heart Rhythm; 2007 May; 4(5):638-47. PubMed ID: 17467634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico assessment of the effects of quinidine, disopyramide and E-4031 on short QT syndrome variant 1 in the human ventricles.
    Luo C; Wang K; Zhang H
    PLoS One; 2017; 12(6):e0179515. PubMed ID: 28632743
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation.
    Yan GX; Antzelevitch C
    Circulation; 1999 Oct; 100(15):1660-6. PubMed ID: 10517739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of cardiac repolarization in the Göttingen minipig.
    Laursen M; Olesen SP; Grunnet M; Mow T; Jespersen T
    J Pharmacol Toxicol Methods; 2011; 63(2):186-95. PubMed ID: 20951813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative electrophysiologic effects of metabolites of quinidine and hydroquinidine.
    Fautrez VM; Adamantidis MM; Caron JF; Libersa CC; Dupuis BA
    J Cardiovasc Pharmacol; 1992 Mar; 19(3):308-18. PubMed ID: 1378107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rate-dependent effects of sematilide on ventricular monophasic action potential duration and delayed rectifier K+ current in rabbits.
    Beatch GN; Davis DR; Laganière S; Williams BA
    J Cardiovasc Pharmacol; 1996 Nov; 28(5):618-30. PubMed ID: 8945674
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ventricular hypertrophy amplifies transmural dispersion of repolarization by preferentially increasing the late sodium current in endocardium.
    Guo D; Yu M; Liu Q; Cox RH; Liu T; Yan GX
    J Electrocardiol; 2014; 47(5):642-8. PubMed ID: 24813353
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple cellular electrophysiological effects of a novel antiarrhythmic furoquinoline derivative HA-7 [N-benzyl-7-methoxy-2,3,4,9-tetrahydrofuro[2,3-b]quinoline-3,4-dione] in guinea pig cardiac preparations.
    Chang GJ; Su MJ; Kuo SC; Lin TP; Lee YS
    J Pharmacol Exp Ther; 2006 Jan; 316(1):380-91. PubMed ID: 16174797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.