These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9404676)

  • 1. A fluorescence double-quenching study of native lipoproteins in an animal model of manganese deficiency.
    Taylor PN; Patterson HH; Klimis-Tavantzis DJ
    Biol Trace Elem Res; 1997; 60(1-2):69-80. PubMed ID: 9404676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge effects on the dynamic quenching of fluorescence of 1,N6-ethenoadenosine oligophosphates by iodide, thallium (I) and acrylamide.
    Ando T; Asai H
    J Biochem; 1980 Jul; 88(1):255-64. PubMed ID: 7410337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence quenching of dimeric and monomeric forms of yeast hexokinase (PII): effect of substrate binding steady-state and time-resolved fluorescence studies.
    Maity H; Jarori GK
    Physiol Chem Phys Med NMR; 2002; 34(1):43-60. PubMed ID: 12403274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide.
    Augusteyn RC; Putilina T; Seifert R
    Curr Eye Res; 1988 Mar; 7(3):237-45. PubMed ID: 3359809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence quenching studies of the rat ovarian LH/hCG receptor.
    Scsuková S; Jezová M; Vranová J; Tatara M; Kolena J
    Gen Physiol Biophys; 1996 Dec; 15(6):451-62. PubMed ID: 9248831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence quenching at interfaces and the permeation of acrylamide and iodide across phospholipid bilayers.
    Moro F; Goñi FM; Urbaneja MA
    FEBS Lett; 1993 Sep; 330(2):129-32. PubMed ID: 8365482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary manganese suppresses alpha1 adrenergic receptor-mediated vascular contraction.
    Kalea AZ; Harris PD; Klimis-Zacas DJ
    J Nutr Biochem; 2005 Jan; 16(1):44-9. PubMed ID: 15629240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence quenching studies of bovine growth hormone in several conformational states.
    Havel HA; Kauffman EW; Elzinga PA
    Biochim Biophys Acta; 1988 Jul; 955(2):154-63. PubMed ID: 3395621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin.
    Eftink MR; Hagaman KA
    Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase.
    Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M
    Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide-quenching of Rhizomucor miehei lipase.
    Stobiecka A
    J Photochem Photobiol B; 2005 Jul; 80(1):9-18. PubMed ID: 15963433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb.
    Zargarian L; Le Tilly V; Jamin N; Chaffotte A; Gabrielsen OS; Toma F; Alpert B
    Biochemistry; 1999 Feb; 38(6):1921-9. PubMed ID: 10026273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The location of protein in serum lipoproteins: a fluorescence quenching study.
    Badley RA
    Biochim Biophys Acta; 1975 Feb; 379(2):517-28. PubMed ID: 235316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the core and surface of human plasma lipoproteins. A study based on the use of five fluorophores.
    Ben-Yashar V; Barenholz Y
    Chem Phys Lipids; 1991 Nov; 60(1):1-14. PubMed ID: 1813177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching in riboflavin-binding protein and its complex with riboflavin.
    Guevara I; Zak Z
    J Protein Chem; 1993 Apr; 12(2):179-85. PubMed ID: 8489704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan fluorescence quenching in rabbit skeletal myosin rod.
    Chang YC; Ludescher RD
    Biophys Chem; 1993 Nov; 48(1):49-59. PubMed ID: 8257767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary manganese affects the concentration, composition and sulfation pattern of heparan sulfate glycosaminoglycans in Sprague-Dawley rat aorta.
    Kalea AZ; Lamari FN; Theocharis AD; Schuschke DA; Karamanos NK; Klimis-Zacas DJ
    Biometals; 2006 Oct; 19(5):535-46. PubMed ID: 16937260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3265-74. PubMed ID: 12641458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.