These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9404952)

  • 41. Pretreatment with pertussis toxin differentially modulates morphine- and beta-endorphin-induced antinociception in the mouse.
    Tseng LF; Collins KA
    J Pharmacol Exp Ther; 1996 Oct; 279(1):39-46. PubMed ID: 8858973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kyotorphin has a novel action on rat cardiac muscle.
    Li Y; Saito Y; Suzuki M; Ueda H; Endo M; Maruyama K
    Biochem Biophys Res Commun; 2006 Jan; 339(3):805-9. PubMed ID: 16325776
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-low dose naloxone restores the antinociceptive effect of morphine in pertussis toxin-treated rats by reversing the coupling of mu-opioid receptors from Gs-protein to coupling to Gi-protein.
    Tsai RY; Tai YH; Tzeng JI; Cherng CH; Yeh CC; Wong CS
    Neuroscience; 2009 Dec; 164(2):435-43. PubMed ID: 19682558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of B1 and B2 receptors in bradykinin-induced rat paw oedema.
    Campos MM; Calixto JB
    Br J Pharmacol; 1995 Mar; 114(5):1005-13. PubMed ID: 7780633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A morphine-like factor in mammalian brain: analgesic activity in rats.
    Pert A; Simantov R; Snyder SH
    Brain Res; 1977 Nov; 136(3):523-33. PubMed ID: 200309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Isolation and analgesic mechanism of the opioid analgesic neuropeptide, kyotorphin (Tyr-Arg)].
    Shiomi H; Ueda H
    Yakugaku Zasshi; 1985 Jun; 105(6):531-41. PubMed ID: 2999373
    [No Abstract]   [Full Text] [Related]  

  • 47. Activation of cathepsin B involved in enkephalin production by bradykinin and its cleavage products in cultured fibroblasts of the rat dental pulp.
    Zhu BF; Kudo T; Maeda S; Inoki R
    J Osaka Univ Dent Sch; 1992 Dec; 32():27-44. PubMed ID: 1341708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes.
    Ueda H; Yoshihara Y; Fukushima N; Shiomi H; Nakamura A; Takagi H
    J Biol Chem; 1987 Jun; 262(17):8165-73. PubMed ID: 3597366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of kyotorphin on the reactivity of hippocampal neurons].
    Chepkova AN; Zotov VM
    Biull Eksp Biol Med; 1986 May; 101(5):578-81. PubMed ID: 3708143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anti-inflammatory, analgesic and antioxidant activities of novel kyotorphin-nitroxide hybrid molecules.
    Bi W; Bi Y; Gao X; Yan X; Zhang Y; Xue P; Bammert CE; Legalley TD; Michael Gibson K; Bi L; Wang JX
    Bioorg Med Chem Lett; 2016 Apr; 26(8):2005-13. PubMed ID: 26961795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kyotorphin (tyrosine-arginine): further evidence for indirect opiate receptor activation.
    Rackham A; Wood PL; Hudgin RL
    Life Sci; 1982 Apr; 30(16):1337-42. PubMed ID: 6283289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracerebroventricular N-ethylmaleimide differentially reduces supraspinal opioid analgesia in mice.
    Sánchez-Blázquez P; Ulibarri I; Garzón J
    Eur J Pharmacol; 1989 Jul; 166(2):193-200. PubMed ID: 2676563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus.
    Brailoiu E; McGuire M; Shuler SA; Deliu E; Barr JL; Abood ME; Brailoiu GC
    Neuroscience; 2017 Dec; 365():23-32. PubMed ID: 28951324
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mediation by B1 and B2 receptors of vasodepressor responses to intravenously administered kinins in anaesthetized dogs.
    Nakhostine N; Ribuot C; Lamontagne D; Nadeau R; Couture R
    Br J Pharmacol; 1993 Sep; 110(1):71-6. PubMed ID: 8220916
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of neuropeptides and capsaicin-sensitive fibres in glutamate-induced nociception and paw oedema in mice.
    Beirith A; Santos AR; Calixto JB
    Brain Res; 2003 Apr; 969(1-2):110-6. PubMed ID: 12676371
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
    Nakayama D; Watanabe C; Watanabe H; Mizoguchi H; Sakurada T; Sakurada S
    Eur J Pharmacol; 2007 Jun; 563(1-3):109-16. PubMed ID: 17343845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Delivery of analgesic peptides to the brain by nano-sized bolaamphiphilic vesicles made of monolayer membranes.
    Popov M; Abu Hammad I; Bachar T; Grinberg S; Linder C; Stepensky D; Heldman E
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):381-9. PubMed ID: 23791683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analgesic effects of Tyr-W-MIF-1: a mixed mu2-opioid receptor agonist/mu1-opioid receptor antagonist.
    Gergen KA; Zadina JE; Paul D
    Eur J Pharmacol; 1996 Nov; 316(1):33-8. PubMed ID: 8982647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of nociceptive responses after systemic administration of amidated kyotorphin.
    Ribeiro MM; Pinto A; Pinto M; Heras M; Martins I; Correia A; Bardaji E; Tavares I; Castanho M
    Br J Pharmacol; 2011 Jul; 163(5):964-73. PubMed ID: 21366550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
    Sakurada S; Hayashi T; Yuhki M; Orito T; Zadina JE; Kastin AJ; Fujimura T; Murayama K; Sakurada C; Sakurada T; Narita M; Suzuki T; Tan-no K; Tseng LF
    Eur J Pharmacol; 2001 Sep; 427(3):203-10. PubMed ID: 11567650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.