These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 9405059)
1. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c. Battistuzzi G; Borsari M; Sola M; Francia F Biochemistry; 1997 Dec; 36(51):16247-58. PubMed ID: 9405059 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of the alkaline transition of cytochrome c. Battistuzzi G; Borsari M; Loschi L; Martinelli A; Sola M Biochemistry; 1999 Jun; 38(25):7900-7. PubMed ID: 10387031 [TBL] [Abstract][Full Text] [Related]
3. Redox chemistry and acid-base equilibria of mitochondrial plant cytochromes c. Battistuzzi G; Borsari M; Cowan JA; Eicken C; Loschi L; Sola M Biochemistry; 1999 Apr; 38(17):5553-62. PubMed ID: 10220343 [TBL] [Abstract][Full Text] [Related]
4. The redox chemistry of the covalently immobilized native and low-pH forms of yeast iso-1-cytochrome c. Bortolotti CA; Battistuzzi G; Borsari M; Facci P; Ranieri A; Sola M J Am Chem Soc; 2006 Apr; 128(16):5444-51. PubMed ID: 16620116 [TBL] [Abstract][Full Text] [Related]
5. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c. Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517 [TBL] [Abstract][Full Text] [Related]
6. Structure and function of cytochrome c2 in electron transfer complexes with the photosynthetic reaction center of Rhodobacter sphaeroides: optical linear dichroism and EPR. Drepper F; Mathis P Biochemistry; 1997 Feb; 36(6):1428-40. PubMed ID: 9063891 [TBL] [Abstract][Full Text] [Related]
7. Protein dynamics: imidazole binding to class I C-type cytochromes. Dumortier C; Meyer TE; Cusanovich MA Arch Biochem Biophys; 1999 Nov; 371(2):142-8. PubMed ID: 10545200 [TBL] [Abstract][Full Text] [Related]
8. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Hagarman A; Duitch L; Schweitzer-Stenner R Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508 [TBL] [Abstract][Full Text] [Related]
9. Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c. Battistuzzi G; Borsari M; De Rienzo F; Di Rocco G; Ranieri A; Sola M Biochemistry; 2007 Feb; 46(6):1694-702. PubMed ID: 17243773 [TBL] [Abstract][Full Text] [Related]
10. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
11. The primary structures of the low-redox potential diheme cytochromes c from the phototrophic bacteria Rhodobacter sphaeroides and Rhodobacter adriaticus reveal a new structural family of c-type cytochromes. Vandenberghe I; Leys D; Demol H; Van Driessche G; Meyer TE; Cusanovich MA; Van Beeumen J Biochemistry; 1998 Sep; 37(38):13075-81. PubMed ID: 9748313 [TBL] [Abstract][Full Text] [Related]
12. Anion binding to cytochrome c2: implications on protein-Ion interactions in class I cytochromes c. Battistuzzi G; Borsari M; Sola M Arch Biochem Biophys; 1997 Mar; 339(2):283-90. PubMed ID: 9056260 [TBL] [Abstract][Full Text] [Related]
13. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins. Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256 [TBL] [Abstract][Full Text] [Related]
14. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Blackledge MJ; Guerlesquin F; Marion D Proteins; 1996 Feb; 24(2):178-94. PubMed ID: 8820485 [TBL] [Abstract][Full Text] [Related]
15. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767 [TBL] [Abstract][Full Text] [Related]
16. Local conformational transition of Hydrogenobacter thermophilus cytochrome c552 relevant to its redox potential. Takayama SJ; Takahashi YT; Mikami S; Irie K; Kawano S; Yamamoto Y; Hemmi H; Kitahara R; Yokoyama S; Akasaka K Biochemistry; 2007 Aug; 46(32):9215-24. PubMed ID: 17658890 [TBL] [Abstract][Full Text] [Related]
17. Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c. Battistuzzi G; Borsari M; Ranieri A; Sola M Arch Biochem Biophys; 2002 Aug; 404(2):227-33. PubMed ID: 12147260 [TBL] [Abstract][Full Text] [Related]
18. How cytochromes with different folds control heme redox potentials. Mao J; Hauser K; Gunner MR Biochemistry; 2003 Aug; 42(33):9829-40. PubMed ID: 12924932 [TBL] [Abstract][Full Text] [Related]
19. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Qian W; Sun YL; Wang YH; Zhuang JH; Xie Y; Huang ZX Biochemistry; 1998 Oct; 37(40):14137-50. PubMed ID: 9760250 [TBL] [Abstract][Full Text] [Related]
20. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4). Monari S; Battistuzzi G; Borsari M; Di Rocco G; Martini L; Ranieri A; Sola M J Phys Chem B; 2009 Oct; 113(41):13645-53. PubMed ID: 19764800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]