These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 9405065)
1. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin. Wang Y; Kachel K; Pablo L; London E Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065 [TBL] [Abstract][Full Text] [Related]
2. Topography of diphtheria toxin A chain inserted into lipid vesicles. Hayashibara M; London E Biochemistry; 2005 Feb; 44(6):2183-96. PubMed ID: 15697244 [TBL] [Abstract][Full Text] [Related]
3. Conformation of the diphtheria toxin T domain in membranes: a site-directed spin-labeling study of the TH8 helix and TL5 loop. Oh KJ; Zhan H; Cui C; Altenbach C; Hubbell WL; Collier RJ Biochemistry; 1999 Aug; 38(32):10336-43. PubMed ID: 10441127 [TBL] [Abstract][Full Text] [Related]
4. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Zhao G; London E Biochemistry; 2005 Mar; 44(11):4488-98. PubMed ID: 15766279 [TBL] [Abstract][Full Text] [Related]
5. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Malenbaum SE; Collier RJ; London E Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159 [TBL] [Abstract][Full Text] [Related]
6. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase. Clark EH; East JM; Lee AG Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643 [TBL] [Abstract][Full Text] [Related]
7. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer. Rosconi MP; Zhao G; London E Biochemistry; 2004 Jul; 43(28):9127-39. PubMed ID: 15248770 [TBL] [Abstract][Full Text] [Related]
8. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Ren J; Lew S; Wang J; London E Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543 [TBL] [Abstract][Full Text] [Related]
9. Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Powl AM; East JM; Lee AG Biochemistry; 2003 Dec; 42(48):14306-17. PubMed ID: 14640699 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion. Paliwal R; London E Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579 [TBL] [Abstract][Full Text] [Related]
11. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
12. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. Wang Y; Malenbaum SE; Kachel K; Zhan H; Collier RJ; London E J Biol Chem; 1997 Oct; 272(40):25091-8. PubMed ID: 9312118 [TBL] [Abstract][Full Text] [Related]
13. Reversible refolding of the diphtheria toxin T-domain on lipid membranes. Ladokhin AS; Legmann R; Collier RJ; White SH Biochemistry; 2004 Jun; 43(23):7451-8. PubMed ID: 15182188 [TBL] [Abstract][Full Text] [Related]
14. Structure and interaction with model membranes of a CNBR peptide of diphtheria toxin B fragment. Cabiaux V; Phalipon A; Kaczorek M; Collier RJ; Ruysschaert JM J Physiol (Paris); 1990; 84(4):273-7. PubMed ID: 2079663 [TBL] [Abstract][Full Text] [Related]
15. [Features of the structure of catalytic subunits of toxins, inhibiting protein synthesis. I. The effect of pH and interaction with the B-chain of ricin]. Bushueva TL; Uroshevich OI; Maĭsurian NA; Mirimanova NV; Tonevitskiĭ AG Mol Biol (Mosk); 1991; 25(2):422-30. PubMed ID: 1881395 [TBL] [Abstract][Full Text] [Related]
16. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942 [TBL] [Abstract][Full Text] [Related]
17. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756 [TBL] [Abstract][Full Text] [Related]
18. Structure and topology of diphtheria toxin R domain in lipid membranes. Quertenmont P; Wolff C; Wattiez R; Vander Borght P; Falmagne P; Ruysschaert JM; Cabiaux V Biochemistry; 1999 Jan; 38(2):660-6. PubMed ID: 9888806 [TBL] [Abstract][Full Text] [Related]
19. Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy. Chenal A; Prongidi-Fix L; Perier A; Aisenbrey C; Vernier G; Lambotte S; Haertlein M; Dauvergne MT; Fragneto G; Bechinger B; Gillet D; Forge V; Ferrand M J Mol Biol; 2009 Sep; 391(5):872-83. PubMed ID: 19576225 [TBL] [Abstract][Full Text] [Related]
20. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin. Ren J; Sharpe JC; Collier RJ; London E Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]