These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9405145)

  • 1. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation.
    Costa M; Fontaine JM; Loiseaux-de Goër S; Michel F
    J Mol Biol; 1997 Dec; 274(3):353-64. PubMed ID: 9405145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based thermodynamics of ion selectivity (Mg
    Kumar A; Satpati P
    Phys Chem Chem Phys; 2022 Oct; 24(39):24192-24202. PubMed ID: 36168989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.
    Zerbato M; Holic N; Moniot-Frin S; Ingrao D; Galy A; Perea J
    PLoS One; 2013; 8(3):e58263. PubMed ID: 23505475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential chemical probing of a group II self-splicing intron identifies bases involved in tertiary interactions and supports an alternative secondary structure model of domain V.
    Costa M; Christian EL; Michel F
    RNA; 1998 Sep; 4(9):1055-68. PubMed ID: 9740125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent invasion of mitochondrial group II introns in specimens of Pylaiella littoralis (brown alga), collected worldwide.
    Ikuta K; Kawai H; Müller DG; Ohama T
    Curr Genet; 2008 Apr; 53(4):207-16. PubMed ID: 18224322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial LSU rDNA of the brown alga Pylaiella littoralis reveals alpha-proteobacterial features and is split by four group IIB introns with an atypical phylogeny.
    Fontaine JM; Rousvoal S; Leblanc C; Kloareg B; Loiseaux-de Goër S
    J Mol Biol; 1995 Aug; 251(3):378-89. PubMed ID: 7544414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reverse-transcriptase-like proteins encoded by group II introns in the mitochondrial genome of the brown alga Pylaiella littoralis belong to two different lineages which apparently coevolved with the group II ribosyme lineages.
    Fontaine JM; Goux D; Kloareg B; Loiseaux-de Goër S
    J Mol Evol; 1997 Jan; 44(1):33-42. PubMed ID: 9010134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-splicing of the mobile group II intron of the filamentous fungus Podospora anserina (COI I1) in vitro.
    Schmidt U; Riederer B; Mörl M; Schmelzer C; Stahl U
    EMBO J; 1990 Jul; 9(7):2289-98. PubMed ID: 2162769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a self-splicing group II intron catalytic effector domain 5: parallels with spliceosomal U6 RNA.
    Seetharaman M; Eldho NV; Padgett RA; Dayie KT
    RNA; 2006 Feb; 12(2):235-47. PubMed ID: 16428604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a eukaryotic group II intron lariat.
    Robart AR; Chan RT; Peters JK; Rajashankar KR; Toor N
    Nature; 2014 Oct; 514(7521):193-7. PubMed ID: 25252982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations at the lariat acceptor site allow self-splicing of a group II intron without lariat formation.
    van der Veen R; Kwakman JH; Grivell LA
    EMBO J; 1987 Dec; 6(12):3827-31. PubMed ID: 2828039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure determination of group II introns.
    Wiryaman T; Toor N
    Methods; 2017 Aug; 125():10-15. PubMed ID: 28648679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of maturase binding and Mg2+ concentration on group II intron RNA folding investigated by UV cross-linking.
    Noah JW; Lambowitz AM
    Biochemistry; 2003 Nov; 42(43):12466-80. PubMed ID: 14580192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing.
    Peebles CL; Belcher SM; Zhang M; Dietrich RC; Perlman PS
    J Biol Chem; 1993 Jun; 268(16):11929-38. PubMed ID: 8389367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple physical forms of excised group II intron RNAs in wheat mitochondria.
    Li-Pook-Than J; Bonen L
    Nucleic Acids Res; 2006; 34(9):2782-90. PubMed ID: 16717283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products.
    Daniels DL; Michels WJ; Pyle AM
    J Mol Biol; 1996 Feb; 256(1):31-49. PubMed ID: 8609612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phylogenetically predicted base-pairing interaction between alpha and alpha' is required for group II splicing in vitro.
    Harris-Kerr CL; Zhang M; Peebles CL
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10658-62. PubMed ID: 7504276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of cognates of group II introns detected in mitochondrial cox1 genes of a diatom and a haptophyte.
    Ehara M; Watanabe KI; Ohama T
    Gene; 2000 Oct; 256(1-2):157-67. PubMed ID: 11054545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the second step of group II intron splicing.
    Chan RT; Peters JK; Robart AR; Wiryaman T; Rajashankar KR; Toor N
    Nat Commun; 2018 Nov; 9(1):4676. PubMed ID: 30410046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.