BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9405163)

  • 1. Signaling pathways in cardiac myocyte hypertrophy.
    Hefti MA; Harder BA; Eppenberger HM; Schaub MC
    J Mol Cell Cardiol; 1997 Nov; 29(11):2873-92. PubMed ID: 9405163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes.
    Lijnen P; Petrov V
    J Mol Cell Cardiol; 1999 May; 31(5):949-70. PubMed ID: 10336836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A farnesyltransferase inhibitor attenuates cardiac myocyte hypertrophy and gene expression.
    Calderone A; Abdelaziz N; Colombo F; Schreiber KL; Rindt H
    J Mol Cell Cardiol; 2000 Jun; 32(6):1127-40. PubMed ID: 10888263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Various hypertrophic stimuli induce distinct phenotypes in cardiomyocytes.
    Schaub MC; Hefti MA; Harder BA; Eppenberger HM
    J Mol Med (Berl); 1997; 75(11-12):901-20. PubMed ID: 9428623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy.
    Pracyk JB; Tanaka K; Hegland DD; Kim KS; Sethi R; Rovira II; Blazina DR; Lee L; Bruder JT; Kovesdi I; Goldshmidt-Clermont PJ; Irani K; Finkel T
    J Clin Invest; 1998 Sep; 102(5):929-37. PubMed ID: 9727061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac hypertrophy: role of G protein-coupled receptors.
    Esposito G; Rapacciuolo A; Naga Prasad SV; Rockman HA
    J Card Fail; 2002 Dec; 8(6 Suppl):S409-14. PubMed ID: 12555153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Signal transduction pathways in cardiac myocyte hypertrophy].
    Fu MG; Tang CS
    Sheng Li Ke Xue Jin Zhan; 2000 Jan; 31(1):19-24. PubMed ID: 12532762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy.
    Kim YK; Suarez J; Hu Y; McDonough PM; Boer C; Dix DJ; Dillmann WH
    Circulation; 2006 Jun; 113(22):2589-97. PubMed ID: 16735677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth.
    Sanna B; Bueno OF; Dai YS; Wilkins BJ; Molkentin JD
    Mol Cell Biol; 2005 Feb; 25(3):865-78. PubMed ID: 15657416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of cardiac genes by mechanical stress. The oncogene signalling hypothesis.
    Schneider MD; Roberts R; Parker TG
    Mol Biol Med; 1991 Apr; 8(2):167-83. PubMed ID: 1839641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular regulation of cardiac hypertrophy.
    Barry SP; Davidson SM; Townsend PA
    Int J Biochem Cell Biol; 2008; 40(10):2023-39. PubMed ID: 18407781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses.
    Clerk A; Cullingford TE; Fuller SJ; Giraldo A; Markou T; Pikkarainen S; Sugden PH
    J Cell Physiol; 2007 Aug; 212(2):311-22. PubMed ID: 17450511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy.
    Proud CG
    Cardiovasc Res; 2004 Aug; 63(3):403-13. PubMed ID: 15276465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs.
    Molkentin JD
    Cardiovasc Res; 2004 Aug; 63(3):467-75. PubMed ID: 15276472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH(2)-terminal kinases.
    Choukroun G; Hajjar R; Fry S; del Monte F; Haq S; Guerrero JL; Picard M; Rosenzweig A; Force T
    J Clin Invest; 1999 Aug; 104(4):391-8. PubMed ID: 10449431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEK and ERK activation in ras-disabled RBL-2H3 mast cells and novel roles for geranylgeranylated and farnesylated proteins in Fc epsilonRI-mediated signaling.
    Graham TE; Pfeiffer JR; Lee RJ; Kusewitt DF; Martinez AM; Foutz T; Wilson BS; Oliver JM
    J Immunol; 1998 Dec; 161(12):6733-44. PubMed ID: 9862703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways.
    Rusyn EV; Reynolds ER; Shao H; Grana TM; Chan TO; Andres DA; Cox AD
    Oncogene; 2000 Sep; 19(41):4685-94. PubMed ID: 11032018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction and the Ets family of transcription factors.
    Yordy JS; Muise-Helmericks RC
    Oncogene; 2000 Dec; 19(55):6503-13. PubMed ID: 11175366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.
    Villalonga P; López-Alcalá C; Bosch M; Chiloeches A; Rocamora N; Gil J; Marais R; Marshall CJ; Bachs O; Agell N
    Mol Cell Biol; 2001 Nov; 21(21):7345-54. PubMed ID: 11585916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential role for G proteins in prostate cancer cell growth and signaling.
    Kue PF; Daaka Y
    J Urol; 2000 Dec; 164(6):2162-7. PubMed ID: 11061948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.