These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9405235)

  • 61. Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochem J; 2001 Jun; 356(Pt 2):589-94. PubMed ID: 11368789
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of an additional interaction domain in transmembrane domains 11 and 12 that supports oligomer formation in the human serotonin transporter.
    Just H; Sitte HH; Schmid JA; Freissmuth M; Kudlacek O
    J Biol Chem; 2004 Feb; 279(8):6650-7. PubMed ID: 14660642
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular organization of the human serotonin transporter at the air/water interface.
    Faivre V; Rosilio V; Manivet P; Langevin D; Launay JM; Baszkin A
    FEBS Lett; 2001 Mar; 492(1-2):14-9. PubMed ID: 11248229
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Overexpression of mammalian integral membrane proteins for structural studies.
    Tate CG
    FEBS Lett; 2001 Aug; 504(3):94-8. PubMed ID: 11532439
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters.
    Androutsellis-Theotokis A; Goldberg NR; Ueda K; Beppu T; Beckman ML; Das S; Javitch JA; Rudnick G
    J Biol Chem; 2003 Apr; 278(15):12703-9. PubMed ID: 12569103
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structural analysis of the extracellular entrance to the serotonin transporter permeation pathway.
    Torres-Altoro MI; Kuntz CP; Nichols DE; Barker EL
    J Biol Chem; 2010 May; 285(20):15369-15379. PubMed ID: 20304925
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glycine residues G338 and G342 are important determinants for serotonin transporter dimerisation and cell surface expression.
    Horschitz S; Lau T; Schloss P
    Neurochem Int; 2008; 52(4-5):770-5. PubMed ID: 17949855
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Topological studies of the rat brain K+-dependent Na+/Ca2+ exchanger NCKX2.
    Cai X; Zhang K; Lytton J
    Ann N Y Acad Sci; 2002 Nov; 976():90-3. PubMed ID: 12502542
    [No Abstract]   [Full Text] [Related]  

  • 69. 1-Methylpyridinium-4-(4-phenylmethanethiosulfonate) iodide, MTS-MPP+, a novel scanning cysteine accessibility method (SCAM) reagent for monoamine transporter studies.
    Gallardo-Godoy A; Torres-Altoro MI; White KJ; Barker EL; Nichols DE
    Bioorg Med Chem; 2007 Jan; 15(1):305-11. PubMed ID: 17064910
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ligand effects on cross-linking support a conformational mechanism for serotonin transport.
    Tao Z; Zhang YW; Agyiri A; Rudnick G
    J Biol Chem; 2009 Dec; 284(49):33807-14. PubMed ID: 19837674
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Involvement of serotonin transporter extracellular loop 1 in serotonin binding and transport.
    Mao Y; Mathewson L; Gesmonde J; Sato Y; Holy M; Sitte HH; Rudnick G
    Mol Membr Biol; 2008 Feb; 25(2):115-27. PubMed ID: 18307099
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cysteine residues in the large extracellular loop (EC2) are essential for the function of the stress-regulated glycoprotein M6a.
    Fuchsova B; Fernández ME; Alfonso J; Frasch AC
    J Biol Chem; 2009 Nov; 284(46):32075-88. PubMed ID: 19737934
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of cysteines and histidins of the norepinephrine transporter.
    Wenge B; Bönisch H
    Neurochem Res; 2013 Jul; 38(7):1303-14. PubMed ID: 23525969
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.
    Padmanabhan Iyer R; Gu S; Nicholson BJ; Jiang JX
    PLoS One; 2013; 8(2):e56792. PubMed ID: 23451088
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Topological mapping methods for α-helical bacterial membrane proteins--an update and a guide.
    Islam ST; Lam JS
    Microbiologyopen; 2013 Apr; 2(2):350-64. PubMed ID: 23408725
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter.
    Shan J; Javitch JA; Shi L; Weinstein H
    PLoS One; 2011 Jan; 6(1):e16350. PubMed ID: 21298009
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of a disulfide bridge essential for transport function of the human proton-coupled amino acid transporter hPAT1.
    Dorn M; Weiwad M; Markwardt F; Laug L; Rudolph R; Brandsch M; Bosse-Doenecke E
    J Biol Chem; 2009 Aug; 284(33):22123-22132. PubMed ID: 19549785
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Oligomeric structure and minimal functional unit of the electrogenic sodium bicarbonate cotransporter NBCe1-A.
    Kao L; Sassani P; Azimov R; Pushkin A; Abuladze N; Peti-Peterdi J; Liu W; Newman D; Kurtz I
    J Biol Chem; 2008 Sep; 283(39):26782-94. PubMed ID: 18658147
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of a disulfide bridge linking the fourth and the seventh extracellular loops of the Na+/glucose cotransporter.
    Gagnon DG; Bissonnette P; Lapointe JY
    J Gen Physiol; 2006 Feb; 127(2):145-58. PubMed ID: 16446504
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular model of the neural dopamine transporter.
    Ravna AW; Sylte I; Dahl SG
    J Comput Aided Mol Des; 2003; 17(5-6):367-82. PubMed ID: 14635728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.