These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9405309)

  • 1. Freezing survival by isolated Malpighian tubules of the New Zealand alpine weta Hemideina maori.
    Neufeld DS; Leader LP
    J Exp Biol; 1998 Jan; 201(Pt 2):227-36. PubMed ID: 9405309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold inhibition of cell volume regulation during the freezing of insect malpighian tubules.
    Neufeld DS; Leader JP
    J Exp Biol; 1998 Jul; 201(Pt 14):2195-204. PubMed ID: 9639593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avoidance of intracellular freezing by the freezing-tolerant New Zealand Alpine weta Hemideina maori (Orthoptera: Stenopelmatidae).
    Wharton DA; Sinclair BJ
    J Insect Physiol; 1997 Jul; 43(7):621-625. PubMed ID: 12769972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical characteristics of ion secretion in malpighian tubules of the New Zealand alpine weta (Hemideina maori).
    Leader JP; Neufeld DS
    J Insect Physiol; 1997 Nov; 44(1):39-48. PubMed ID: 12770442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold tolerance of New Zealand alpine insects.
    Wharton DA
    J Insect Physiol; 2011 Aug; 57(8):1090-5. PubMed ID: 21397607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis.
    Yi SX; Lee RE
    J Exp Biol; 2005 May; 208(Pt 10):1895-904. PubMed ID: 15879070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular ion activities in Malpighian tubule cells of Rhodnius prolixus: evaluation of Na+-K+-2Cl- cotransport across the basolateral membrane.
    Ianowski JP; Christensen RJ; O'Donnell MJ
    J Exp Biol; 2002 Jun; 205(Pt 11):1645-55. PubMed ID: 12000809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K(+) transport in Malpighian tubules of Tenebrio molitor L: a study of electrochemical gradients and basal K(+) uptake mechanisms.
    Wiehart UI; Nicolson SW; Van Kerkhove E
    J Exp Biol; 2003 Mar; 206(Pt 6):949-57. PubMed ID: 12582137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae).
    Ramløv H; Wharton DA; Wilson PW
    Cryobiology; 1996 Dec; 33(6):607-13. PubMed ID: 8975688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening.
    Levis NA; Yi SX; Lee RE
    J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella.
    Yi SX; Lee RE
    J Exp Biol; 2016 Jan; 219(Pt 1):17-25. PubMed ID: 26643089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of K+:Cl- cotransport and Na+/K+-ATPase to basolateral ion transport in malpighian tubules of Drosophila melanogaster.
    Linton SM; O'Donnell MJ
    J Exp Biol; 1999 Jun; 202(Pt 11):1561-70. PubMed ID: 10229702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of tetraethylammonium uptake across the basolateral membrane of the Drosophila Malpighian (renal) tubule.
    Rheault MR; Debicki DM; O'Donnell MJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Aug; 289(2):R495-R504. PubMed ID: 15860649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the cyclopeptide mycotoxin destruxin A on the Malpighian tubules of Rhodnius prolixus (Stål).
    Ruiz-Sanchez E; Orchard I; Lange AB
    Toxicon; 2010 Jun; 55(6):1162-70. PubMed ID: 20060849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addition of oligosaccharide decreases the freezing lesions on human red blood cell membrane in the presence of dextran and glucose.
    Quan GB; Han Y; Liu MX; Fang L; Du W; Ren SP; Wang JX; Wang Y
    Cryobiology; 2011 Apr; 62(2):135-44. PubMed ID: 21276438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids modulate ion transport and fluid secretion by insect Malpighian tubules.
    Hazel MH; Ianowski JP; Christensen RJ; Maddrell SH; O'Donnell MJ
    J Exp Biol; 2003 Jan; 206(Pt 1):79-91. PubMed ID: 12456699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid secretion by isolated Malpighian tubules of Drosophila melanogaster Meig.: effects of organic anions, quinacrine and a diuretic factor found in the secreted fluid.
    Riegel JA; Farndale RW; Maddrell SH
    J Exp Biol; 1999 Sep; 202(Pt 17):2339-48. PubMed ID: 10441085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in
    Yerushalmi GY; Misyura L; MacMillan HA; Donini A
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29367271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.