These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 9405568)

  • 41. Spatial processing in the monkey frontal eye field. I. Predictive visual responses.
    Umeno MM; Goldberg ME
    J Neurophysiol; 1997 Sep; 78(3):1373-83. PubMed ID: 9310428
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous representation of saccade targets and visual onsets in monkey lateral intraparietal area.
    Gottlieb J; Kusunoki M; Goldberg ME
    Cereb Cortex; 2005 Aug; 15(8):1198-206. PubMed ID: 15616137
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional heterogeneity of macaque lateral intraparietal neurons.
    Premereur E; Vanduffel W; Janssen P
    J Neurosci; 2011 Aug; 31(34):12307-17. PubMed ID: 21865473
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them.
    Steenrod SC; Phillips MH; Goldberg ME
    J Neurophysiol; 2013 May; 109(10):2596-605. PubMed ID: 23468388
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-dimensional saccade-related population activity in superior colliculus in monkey.
    Anderson RW; Keller EL; Gandhi NJ; Das S
    J Neurophysiol; 1998 Aug; 80(2):798-817. PubMed ID: 9705470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monkey prefrontal neuronal activity coding the forthcoming saccade in an oculomotor delayed matching-to-sample task.
    Hasegawa R; Sawaguchi T; Kubota K
    J Neurophysiol; 1998 Jan; 79(1):322-33. PubMed ID: 9425201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural activity in the primate superior colliculus and saccadic reaction times in double-step experiments.
    Lünenburger L; Lindner W; Hoffmann KP
    Prog Brain Res; 2003; 142():91-107. PubMed ID: 12693256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2001 Apr; 85(4):1673-85. PubMed ID: 11287490
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity of visuomotor burst neurons in the superior colliculus accompanying express saccades.
    Edelman JA; Keller EL
    J Neurophysiol; 1996 Aug; 76(2):908-26. PubMed ID: 8871208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?
    Sadeh M; Sajad A; Wang H; Yan X; Crawford JD
    Front Neural Circuits; 2018; 12():74. PubMed ID: 30405361
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Threshold mechanism for saccade initiation in frontal eye field and superior colliculus.
    Jantz JJ; Watanabe M; Everling S; Munoz DP
    J Neurophysiol; 2013 Jun; 109(11):2767-80. PubMed ID: 23486198
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Independent feedback control of horizontal and vertical amplitude during oblique saccades evoked by electrical stimulation of the superior colliculus.
    Nichols MJ; Sparks DL
    J Neurophysiol; 1996 Dec; 76(6):4080-93. PubMed ID: 8985902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competition between saccade goals in the superior colliculus produces saccade curvature.
    McPeek RM; Han JH; Keller EL
    J Neurophysiol; 2003 May; 89(5):2577-90. PubMed ID: 12611995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-term adaptation of electrically induced saccades in monkey superior colliculus.
    Melis BJ; van Gisbergen JA
    J Neurophysiol; 1996 Sep; 76(3):1744-58. PubMed ID: 8890289
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset.
    Sparks DL
    Brain Res; 1978 Nov; 156(1):1-16. PubMed ID: 100173
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation.
    Linden JF; Grunewald A; Andersen RA
    J Neurophysiol; 1999 Jul; 82(1):343-58. PubMed ID: 10400963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implications for control of fixation and saccade behavior.
    Everling S; Paré M; Dorris MC; Munoz DP
    J Neurophysiol; 1998 Feb; 79(2):511-28. PubMed ID: 9463418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compensating for a shifting world: evolving reference frames of visual and auditory signals across three multimodal brain areas.
    Caruso VC; Pages DS; Sommer MA; Groh JM
    J Neurophysiol; 2021 Jul; 126(1):82-94. PubMed ID: 33852803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multielectrode evidence for spreading activity across the superior colliculus movement map.
    Port NL; Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Jul; 84(1):344-57. PubMed ID: 10899209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.