These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 9405601)

  • 1. Structure and function in rhodopsin: topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops.
    Cai K; Langen R; Hubbell WL; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14267-72. PubMed ID: 9405601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Yang K; Farrens DL; Farahbakhsh ZT; Khorana HG; Hubbell WL
    Biochemistry; 1996 Sep; 35(38):12470-8. PubMed ID: 8823182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between cysteine pairs engineered in cytoplasmic loops 1, 3, and 4.
    Cai K; Klein-Seetharaman J; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12479-85. PubMed ID: 11601971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the dark state tertiary structure in the cytoplasmic domain of rhodopsin: proximities between amino acids deduced from spontaneous disulfide bond formation between Cys316 and engineered cysteines in cytoplasmic loop 1.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 2001 Oct; 40(42):12472-8. PubMed ID: 11601970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and function in rhodopsin. Single cysteine substitution mutants in the cytoplasmic interhelical E-F loop region show position-specific effects in transducin activation.
    Yang K; Farrens DL; Hubbell WL; Khorana HG
    Biochemistry; 1996 Sep; 35(38):12464-9. PubMed ID: 8823181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels.
    Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG
    Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study.
    Farahbakhsh ZT; Ridge KD; Khorana HG; Hubbell WL
    Biochemistry; 1995 Jul; 34(27):8812-9. PubMed ID: 7612622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of transmembrane domain helix-III during rhodopsin photoactivation.
    Ou WB; Yi T; Kim JM; Khorana HG
    PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: a site-directed spin-labeling study.
    Altenbach C; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 1999 Jun; 38(25):7931-7. PubMed ID: 10387035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1.
    Altenbach C; Klein-Seetharaman J; Cai K; Khorana HG; Hubbell WL
    Biochemistry; 2001 Dec; 40(51):15493-500. PubMed ID: 11747424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function in rhodopsin: peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in interaction with rhodopsin kinase.
    Thurmond RL; Creuzenet C; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1715-20. PubMed ID: 9050844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and function in rhodopsin: mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8.
    Altenbach C; Cai K; Klein-Seetharaman J; Khorana HG; Hubbell WL
    Biochemistry; 2001 Dec; 40(51):15483-92. PubMed ID: 11747423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.
    Klein-Seetharaman J; Getmanova EV; Loewen MC; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13744-9. PubMed ID: 10570143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cysteine substitution mutants at amino acid positions 306-321 in rhodopsin, the sequence between the cytoplasmic end of helix VII and the palmitoylation sites: sulfhydryl reactivity and transducin activation reveal a tertiary structure.
    Cai K; Klein-Seetharaman J; Farrens D; Zhang C; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7925-30. PubMed ID: 10387034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin.
    Loewen MC; Klein-Seetharaman J; Getmanova EV; Reeves PJ; Schwalbe H; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4888-92. PubMed ID: 11320239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of the amino acids in the cytoplasmic loop connecting helices C and D in rhodopsin. Chemical reactivity in the dark state following single cysteine replacements.
    Ridge KD; Zhang C; Khorana HG
    Biochemistry; 1995 Jul; 34(27):8804-11. PubMed ID: 7612621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin.
    Farrens DL; Altenbach C; Yang K; Hubbell WL; Khorana HG
    Science; 1996 Nov; 274(5288):768-70. PubMed ID: 8864113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR spectroscopy of phosphorylated wild-type rhodopsin: mobility of the phosphorylated C-terminus of rhodopsin in the dark and upon light activation.
    Getmanova E; Patel AB; Klein-Seetharaman J; Loewen MC; Reeves PJ; Friedman N; Sheves M; Smith SO; Khorana HG
    Biochemistry; 2004 Feb; 43(4):1126-33. PubMed ID: 14744159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.