These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9405602)

  • 21. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
    Altenbach C; Kusnetzow AK; Ernst OP; Hofmann KP; Hubbell WL
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7439-44. PubMed ID: 18490656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6.
    Han M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments).
    Kosower EM
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1076-80. PubMed ID: 3422479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions.
    Madabushi S; Gross AK; Philippi A; Meng EC; Wensel TG; Lichtarge O
    J Biol Chem; 2004 Feb; 279(9):8126-32. PubMed ID: 14660595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability of dark state rhodopsin is mediated by a conserved ion pair in intradiscal loop E-2.
    Janz JM; Fay JF; Farrens DL
    J Biol Chem; 2003 May; 278(19):16982-91. PubMed ID: 12547830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular interactions and mutational impact upon rhodopsin (G90→D90) for hindering dark adaptation of eye: A comparative structural level outlook for signaling mechanism in night blindness.
    Banerjee A; Ray S
    Mutat Res; 2019 Mar; 814():7-14. PubMed ID: 30659944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.
    Klein-Seetharaman J; Getmanova EV; Loewen MC; Reeves PJ; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13744-9. PubMed ID: 10570143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shift in Conformational Equilibrium Induces Constitutive Activity of G-Protein-Coupled Receptor, Rhodopsin.
    Maeda R; Hiroshima M; Yamashita T; Wada A; Sako Y; Shichida Y; Imamoto Y
    J Phys Chem B; 2018 May; 122(18):4838-4843. PubMed ID: 29668280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness.
    Rao VR; Cohen GB; Oprian DD
    Nature; 1994 Feb; 367(6464):639-42. PubMed ID: 8107847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constraints on the conformation of the cytoplasmic face of dark-adapted and light-excited rhodopsin inferred from antirhodopsin antibody imprints.
    Bailey BW; Mumey B; Hargrave PA; Arendt A; Ernst OP; Hofmann KP; Callis PR; Burritt JB; Jesaitis AJ; Dratz EA
    Protein Sci; 2003 Nov; 12(11):2453-75. PubMed ID: 14573859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-cysteine substitution mutants at amino acid positions 55-75, the sequence connecting the cytoplasmic ends of helices I and II in rhodopsin: reactivity of the sulfhydryl groups and their derivatives identifies a tertiary structure that changes upon light-activation.
    Klein-Seetharaman J; Hwa J; Cai K; Altenbach C; Hubbell WL; Khorana HG
    Biochemistry; 1999 Jun; 38(25):7938-44. PubMed ID: 10387036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and function in rhodopsin. Cysteines 65 and 316 are in proximity in a rhodopsin mutant as indicated by disulfide formation and interactions between attached spin labels.
    Yang K; Farrens DL; Altenbach C; Farahbakhsh ZT; Hubbell WL; Khorana HG
    Biochemistry; 1996 Nov; 35(45):14040-6. PubMed ID: 8916888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protonatable residues at the cytoplasmic end of transmembrane helix-2 in the signal transducer HtrI control photochemistry and function of sensory rhodopsin I.
    Jung KH; Spudich JL
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6557-61. PubMed ID: 8692855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of the amino acids in the cytoplasmic loop connecting helices C and D in rhodopsin. Chemical reactivity in the dark state following single cysteine replacements.
    Ridge KD; Zhang C; Khorana HG
    Biochemistry; 1995 Jul; 34(27):8804-11. PubMed ID: 7612621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function in rhodopsin: topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops.
    Cai K; Langen R; Hubbell WL; Khorana HG
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14267-72. PubMed ID: 9405601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, synthesis and pharmacological evaluation of 5-hydroxytryptamine(1a) receptor ligands to explore the three-dimensional structure of the receptor.
    López-Rodríguez ML; Vicente B; Deupi X; Barrondo S; Olivella M; Morcillo MJ; Behamú B; Ballesteros JA; Sallés J; Pardo L
    Mol Pharmacol; 2002 Jul; 62(1):15-21. PubMed ID: 12065750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorylation of tyrosine 992, 1068, and 1086 is required for conformational change of the human epidermal growth factor receptor c-terminal tail.
    Bishayee A; Beguinot L; Bishayee S
    Mol Biol Cell; 1999 Mar; 10(3):525-36. PubMed ID: 10069801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.