BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 9405613)

  • 21. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization.
    Mateu MG; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3595-9. PubMed ID: 10097082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of R249S carcinogenic and H168R-R249S suppressor mutations on p53-DNA interaction, a multi scale computational study.
    Rauf SM; Ismael M; Sahu KK; Suzuki A; Koyama M; Tsuboi H; Hatakeyama N; Endou A; Takaba H; Del Carpio CA; Kubo M; Miyamoto A
    Comput Biol Med; 2010 May; 40(5):498-508. PubMed ID: 20403587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug.
    Boeckler FM; Joerger AC; Jaggi G; Rutherford TJ; Veprintsev DB; Fersht AR
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10360-5. PubMed ID: 18650397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. R248Q mutation--Beyond p53-DNA binding.
    Ng JW; Lama D; Lukman S; Lane DP; Verma CS; Sim AY
    Proteins; 2015 Dec; 83(12):2240-50. PubMed ID: 26442703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution structure of the p53 core domain: implications for binding small-molecule stabilizing compounds.
    Ho WC; Luo C; Zhao K; Chai X; Fitzgerald MX; Marmorstein R
    Acta Crystallogr D Biol Crystallogr; 2006 Dec; 62(Pt 12):1484-93. PubMed ID: 17139084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of stability on the biological function of p53.
    Khoo KH; Mayer S; Fersht AR
    J Biol Chem; 2009 Nov; 284(45):30974-80. PubMed ID: 19700401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating DNA Binding and Conformational Variation in Temperature Sensitive p53 Cancer Mutants Using QM-MM Simulations.
    Koulgi S; Achalere A; Sonavane U; Joshi R
    PLoS One; 2015; 10(11):e0143065. PubMed ID: 26579714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive evolution of p53 thermodynamic stability.
    Khoo KH; Andreeva A; Fersht AR
    J Mol Biol; 2009 Oct; 393(1):161-75. PubMed ID: 19683006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors governing loss and rescue of DNA binding upon single and double mutations in the p53 core domain.
    Wright JD; Noskov SY; Lim C
    Nucleic Acids Res; 2002 Apr; 30(7):1563-74. PubMed ID: 11917017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization of mutant p53 via alkylation of cysteines and effects on DNA binding.
    Kaar JL; Basse N; Joerger AC; Stephens E; Rutherford TJ; Fersht AR
    Protein Sci; 2010 Dec; 19(12):2267-78. PubMed ID: 20878668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain.
    Butler JS; Loh SN
    Biochemistry; 2003 Mar; 42(8):2396-403. PubMed ID: 12600206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.
    Kamaraj B; Bogaerts A
    PLoS One; 2015; 10(8):e0134638. PubMed ID: 26244575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abrogation of wild-type p53-mediated transactivation is insufficient for mutant p53-induced immortalization of normal human mammary epithelial cells.
    Cao Y; Gao Q; Wazer DE; Band V
    Cancer Res; 1997 Dec; 57(24):5584-9. PubMed ID: 9407971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. p53 induces distinct epigenetic states at its direct target promoters.
    Vrba L; Junk DJ; Novak P; Futscher BW
    BMC Genomics; 2008 Oct; 9():486. PubMed ID: 18922183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases.
    Rumfeldt JA; Stathopulos PB; Chakrabarrty A; Lepock JR; Meiering EM
    J Mol Biol; 2006 Jan; 355(1):106-23. PubMed ID: 16307756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidating the Mechanisms of R248Q Mutation-Enhanced p53 Aggregation and Its Inhibition by Resveratrol.
    Liu Q; Li L; Yu Y; Wei G
    J Phys Chem B; 2023 Sep; 127(36):7708-7720. PubMed ID: 37665658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1.
    Pan Y; Ma B; Venkataraghavan RB; Levine AJ; Nussinov R
    Biochemistry; 2005 Feb; 44(5):1423-32. PubMed ID: 15683227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.