These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9405881)

  • 1. Skeletal muscle Na,K-ATPase concentration changes and intramuscular and extrarenal K homeostasis in animals and humans.
    Bundgaard H; Schmidt TA; Kjeldsen K
    Ann N Y Acad Sci; 1997 Nov; 834():648-50. PubMed ID: 9405881
    [No Abstract]   [Full Text] [Related]  

  • 2. K+ supplementation increases muscle [Na+-K+-ATPase] and improves extrarenal K+ homeostasis in rats.
    Bundgaard H; Schmidt TA; Larsen JS; Kjeldsen K
    J Appl Physiol (1985); 1997 Apr; 82(4):1136-44. PubMed ID: 9104850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of training on potassium homeostasis during exercise and skeletal muscle Na+,K(+)-ATPase concentration in young adult and middle-aged Dutch Warmblood horses.
    Suwannachot P; Joosten BJ; Klarenbeek A; Hofma J; Enzerink E; van Weeren PR; Everts ME
    Am J Vet Res; 2005 Jul; 66(7):1252-8. PubMed ID: 16111166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats.
    Eiam-Ong S; Sabatini S
    Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscular K-clearance capacity in vivo must be evaluated on the basis of K and Na,K-ATPase concentrations.
    Bundgaard H; Kjeldsen K
    Ann N Y Acad Sci; 2003 Apr; 986():623-4. PubMed ID: 12763902
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane excitability and calcium homeostasis in exercising skeletal muscle.
    Carlsen RC; Villarin JJ
    Am J Phys Med Rehabil; 2002 Nov; 81(11 Suppl):S28-39. PubMed ID: 12409809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digoxin affects potassium homeostasis during exercise in patients with heart failure.
    Schmidt TA; Bundgaard H; Olesen HL; Secher NH; Kjeldsen K
    Cardiovasc Res; 1995 Apr; 29(4):506-11. PubMed ID: 7796444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial K homeostasis in ischemia--importance of Na,K-ATPase.
    Schmidt TA; Kjeldsen K
    Basic Res Cardiol; 1997; 92 Suppl 2():57-9. PubMed ID: 9457376
    [No Abstract]   [Full Text] [Related]  

  • 9. Hypokalemia and hyperkalemia in infants and children: pathophysiology and treatment.
    Daly K; Farrington E
    J Pediatr Health Care; 2013; 27(6):486-96; quiz 497-8. PubMed ID: 24139581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between Na, K-ATPase activity and potassium and magnesium contents in skeletal muscle of renal stone patients.
    Prasongwatana V; Tavichakorntrakool R; Sriboonlue P; Wongkham C; Bovornpadungkitti S; Premgamone A; Reungjuiy S
    Southeast Asian J Trop Med Public Health; 2001 Sep; 32(3):648-53. PubMed ID: 11944732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endotoxemia stimulates skeletal muscle Na+-K+-ATPase and raises blood lactate under aerobic conditions in humans.
    Bundgaard H; Kjeldsen K; Suarez Krabbe K; van Hall G; Simonsen L; Qvist J; Hansen CM; Moller K; Fonsmark L; Lav Madsen P; Klarlund Pedersen B
    Am J Physiol Heart Circ Physiol; 2003 Mar; 284(3):H1028-34. PubMed ID: 12446281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal responses of oxidative vs. glycolytic skeletal muscles to K+ deprivation: Na+ pumps and cell cations.
    Thompson CB; Choi C; Youn JH; McDonough AA
    Am J Physiol; 1999 Jun; 276(6):C1411-9. PubMed ID: 10362605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of muscle in regulating extracellular [K+].
    McDonough AA; Youn JH
    Semin Nephrol; 2005 Sep; 25(5):335-42. PubMed ID: 16139689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle.
    Lindinger MI
    J Mol Cell Cardiol; 1995 Apr; 27(4):1011-22. PubMed ID: 7563098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin.
    James JH; Wagner KR; King JK; Leffler RE; Upputuri RK; Balasubramaniam A; Friend LA; Shelly DA; Paul RJ; Fischer JE
    Am J Physiol; 1999 Jul; 277(1):E176-86. PubMed ID: 10409142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sepsis increases skeletal muscle sodium, potassium-adenosinetriphosphatase activity without affecting messenger RNA or protein levels.
    O'Brien WJ; Lingrel JB; Fischer JE; Hasselgren PO
    J Am Coll Surg; 1996 Nov; 183(5):471-9. PubMed ID: 8912616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite.
    Hawke TJ; Willmets RG; Lindinger MI
    Can J Physiol Pharmacol; 1999 Nov; 77(11):835-43. PubMed ID: 10593655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes of intracellular electrolyte contents in rat skeletal muscle during body suspension.
    Nagaoka R; Mizuno M; Yamashita S; Akaike N
    Comp Biochem Physiol A Physiol; 1995 Apr; 110(4):341-6. PubMed ID: 7735902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormonal and pharmacological modification of plasma potassium homeostasis.
    Clausen T
    Fundam Clin Pharmacol; 2010 Oct; 24(5):595-605. PubMed ID: 20618871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
    Benders AA; Wevers RA; Veerkamp JH
    Acta Physiol Scand; 1996 Mar; 156(3):355-67. PubMed ID: 8729696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.