These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 9406029)
41. Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. Crowley SJ; Lee C; Tseng CY; Fogg LF; Eastman CI J Biol Rhythms; 2003 Dec; 18(6):513-23. PubMed ID: 14667152 [TBL] [Abstract][Full Text] [Related]
42. Effect of dark exposure in the middle of the day on Period1, Period2, and arylalkylamine N-acetyltransferase mRNA levels in the rat suprachiasmatic nucleus and pineal gland. Fukuhara C Brain Res Mol Brain Res; 2004 Nov; 130(1-2):109-14. PubMed ID: 15519681 [TBL] [Abstract][Full Text] [Related]
43. Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats. Feillet CA; Mendoza J; Pévet P; Challet E Eur J Neurosci; 2008 Dec; 28(12):2451-8. PubMed ID: 19087173 [TBL] [Abstract][Full Text] [Related]
44. Unexpected c-fos gene expression in the suprachiasmatic nucleus of mice entrained to a skeleton photoperiod. Schwartz WJ; Peters RV; Aronin N; Bennett MR J Biol Rhythms; 1996 Mar; 11(1):35-44. PubMed ID: 8695890 [TBL] [Abstract][Full Text] [Related]
45. Paradoxical effects of NPY in the suprachiasmatic nucleus. Gamble KL; Paul KN; Karom MC; Tosini G; Albers HE Eur J Neurosci; 2006 May; 23(9):2488-94. PubMed ID: 16706855 [TBL] [Abstract][Full Text] [Related]
46. Serotonin agonist quipazine induces photic-like phase shifts of the circadian activity rhythm and c-Fos expression in the rat suprachiasmatic nucleus. Kohler M; Kalkowski A; Wollnik F J Biol Rhythms; 1999 Apr; 14(2):131-40. PubMed ID: 10194650 [TBL] [Abstract][Full Text] [Related]
47. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus. Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879 [TBL] [Abstract][Full Text] [Related]
48. Circadian rhythms of pineal function in rats. Binkley SA Endocr Rev; 1983; 4(3):255-70. PubMed ID: 6313339 [TBL] [Abstract][Full Text] [Related]
49. Comparison of the pineal and SCN rhythmicity. Effect of photic and non-photic stimuli, photoperiod, and age. Illnerová H; Trávnícková Z; Jác M; Sumová A Adv Exp Med Biol; 1999; 460():247-60. PubMed ID: 10810520 [No Abstract] [Full Text] [Related]
50. Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms. Gorman MR; Yellon SM; Lee TM J Biol Rhythms; 2001 Dec; 16(6):552-63. PubMed ID: 11760013 [TBL] [Abstract][Full Text] [Related]
51. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Smith VM; Sterniczuk R; Phillips CI; Antle MC Neuroscience; 2008 Dec; 157(3):513-23. PubMed ID: 18930788 [TBL] [Abstract][Full Text] [Related]
52. Melatonin rhythm observed throughout a three-cycle bright-light stimulus designed to reset the human circadian pacemaker. Shanahan TL; Kronauer RE; Duffy JF; Williams GH; Czeisler CA J Biol Rhythms; 1999 Jun; 14(3):237-53. PubMed ID: 10452336 [TBL] [Abstract][Full Text] [Related]
53. Pineal indoleamine metabolism in the cotton rat, Sigmodon hispidus: studies on norepinephrine, serotonin, N-acetyltransferase activity and melatonin. Matthews SA; Evans KL; Morgan WW; Petterborg LJ; Reiter RJ Prog Clin Biol Res; 1982; 92():35-44. PubMed ID: 7051040 [TBL] [Abstract][Full Text] [Related]
54. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). Konturek SJ; Konturek PC; Brzozowska I; Pawlik M; Sliwowski Z; Cześnikiewicz-Guzik M; Kwiecień S; Brzozowski T; Bubenik GA; Pawlik WW J Physiol Pharmacol; 2007 Sep; 58(3):381-405. PubMed ID: 17928638 [TBL] [Abstract][Full Text] [Related]
55. Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin. Turkowska E; Majewski PM; Rai S; Skwarlo-Sonta K Chronobiol Int; 2014 Feb; 31(1):134-43. PubMed ID: 24134119 [TBL] [Abstract][Full Text] [Related]
56. Resetting the melatonin rhythm with light in humans. Shanahan TL; Zeitzer JM; Czeisler CA J Biol Rhythms; 1997 Dec; 12(6):556-67. PubMed ID: 9406030 [TBL] [Abstract][Full Text] [Related]
57. A melatonin agonist and N-acetyl-N2-formyl-5-methoxykynurenamine accelerate the reentrainment of the melatonin rhythm following a phase advance of the light-dark cycle. Kennaway DJ; Blake P; Webb HA Brain Res; 1989 Aug; 495(2):349-54. PubMed ID: 2765935 [TBL] [Abstract][Full Text] [Related]
58. Serotonin N-acetyltransferase (NAT) activity and melatonin levels in the frog retina are not correlated during the seasonal cycle. Delgado MJ; Alonso-Gómez AL; Gancedo B; de Pedro N; Valenciano AI; Alonso-Bedate M Gen Comp Endocrinol; 1993 Nov; 92(2):143-50. PubMed ID: 8282167 [TBL] [Abstract][Full Text] [Related]
59. Adjustment of the human melatonin and cortisol rhythms to shortening of the natural summer photoperiod. Vondrasová-Jelínková D; Hájek I; Illnerová H Brain Res; 1999 Jan; 816(1):249-53. PubMed ID: 9878767 [TBL] [Abstract][Full Text] [Related]
60. Maintenance of a circadian phase adjustment of the human melatonin rhythm following artificial long days. Illnerová H; Buresová M; Nedvídková J; Dvoráková M; Zvolský P Brain Res; 1993 Oct; 626(1-2):322-6. PubMed ID: 8281444 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]