These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 9406161)
1. Mechanisms that may be involved in calcium tolerance of the diabetic heart. Ziegelhöffer A; Ravingerová T; Styk J; Seboková J; Waczulíková I; Breier A; Dzurba A; Volkovová K; Cársky J; Turecký L Mol Cell Biochem; 1997 Nov; 176(1-2):191-8. PubMed ID: 9406161 [TBL] [Abstract][Full Text] [Related]
2. Remodelling of the sarcolemma in diabetic rat hearts: the role of membrane fluidity. Ziegelhöffer-Mihalovicová B; Waczulíková I; Sikurová L; Styk J; Cársky J; Ziegelhöffer A Mol Cell Biochem; 2003 Jul; 249(1-2):175-82. PubMed ID: 12956413 [TBL] [Abstract][Full Text] [Related]
3. Diabetic cardiomyopathy in rats: biochemical mechanisms of increased tolerance to calcium overload. Ziegelhöffer A; Ravingerová T; Styk J; Tribulová N; Volkovová K; Seboková J; Breier A Diabetes Res Clin Pract; 1996 Jul; 31 Suppl():S93-103. PubMed ID: 8864647 [TBL] [Abstract][Full Text] [Related]
5. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload. Nakanishi H; Makino N; Hata T; Matsui H; Yano K; Yanaga T Am J Physiol; 1989 Aug; 257(2 Pt 2):H349-56. PubMed ID: 2548404 [TBL] [Abstract][Full Text] [Related]
6. Fluidising effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptozotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca2+ overload. Waczulíková I; Ziegelhöffer A; Országhová Z; Cársky J J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):727-39. PubMed ID: 12510859 [TBL] [Abstract][Full Text] [Related]
7. Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+ -ATPase and Na+/K+ -ATPase activity in the heart of streptozotocin-diabetic rats. Babu PV; Sabitha KE; Shyamaladevi CS Chem Biol Interact; 2006 Aug; 162(2):157-64. PubMed ID: 16846594 [TBL] [Abstract][Full Text] [Related]
8. Prevention of processes coupled with free radical formation prevents also the development of calcium-resistance in the diabetic heart. Ziegelhöffer A; Styk J; Ravingerová T; Seboková J; Volkovová K; Waczulíková I; Cársky J; Dzurba A; Docolomanský P Life Sci; 1999; 65(18-19):1999-2001. PubMed ID: 10576454 [TBL] [Abstract][Full Text] [Related]
9. Prevention by 7-oxo-prostacyclin of the calcium paradox in rat heart: role of the sarcolemmal (Na,K)-ATPase. Ziegelhöffer A; Ravingerová T; Dzurba A; Tribulová N; Slezák J; Breier A; Szekeres L Mol Cell Biochem; 1996; 160-161():257-63. PubMed ID: 8901481 [TBL] [Abstract][Full Text] [Related]
10. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency. Kato M; Kako KJ Mol Cell Biochem; 1988 Sep; 83(1):15-25. PubMed ID: 2851714 [TBL] [Abstract][Full Text] [Related]
11. Diabetes- and semi-starvation-induced changes in metabolism and regulation of Na,K-ATPase in rat heart. Ziegelhöffer A; Bundgaard H; Ravingerová T; Tribulová N; Enevoldsen MT; Kjeldsen K Diabetes Nutr Metab; 2003 Aug; 16(4):222-31. PubMed ID: 14768771 [TBL] [Abstract][Full Text] [Related]
12. Increased sarcolemmal Ca2+ transport activity in skeletal muscle of diabetic rats. Taira Y; Hata T; Ganguly PK; Elimban V; Dhalla NS Am J Physiol; 1991 Apr; 260(4 Pt 1):E626-32. PubMed ID: 1850203 [TBL] [Abstract][Full Text] [Related]
13. Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart. Pierce GN; Dhalla NS Am J Physiol; 1983 Sep; 245(3):C241-7. PubMed ID: 6137147 [TBL] [Abstract][Full Text] [Related]
14. Sequence of alterations in subcellular organelles during the development of heart dysfunction in diabetes. Takeda N; Dixon IM; Hata T; Elimban V; Shah KR; Dhalla NS Diabetes Res Clin Pract; 1996 Feb; 30 Suppl():113-22. PubMed ID: 8964185 [TBL] [Abstract][Full Text] [Related]
15. Heart sarcolemmal ATPase and calcium binding activities in rats fed a high cholesterol diet. Moffat MP; Dhalla NS Can J Cardiol; 1985; 1(3):194-200. PubMed ID: 2996727 [TBL] [Abstract][Full Text] [Related]
16. Cardiac membrane Ca(2+)-transport in alloxan-induced diabetes in rats. Golfman LS; Takeda N; Dhalla NS Diabetes Res Clin Pract; 1996 Jul; 31 Suppl():S73-7. PubMed ID: 8864644 [TBL] [Abstract][Full Text] [Related]
17. Modification of heart sarcolemmal Na+/K+-ATPase activity during development of the calcium paradox. Alto LE; Elimban V; Lukas A; Dhalla NS Mol Cell Biochem; 2000 Apr; 207(1-2):87-94. PubMed ID: 10888231 [TBL] [Abstract][Full Text] [Related]
18. Influence of kaempferol, a flavonoid compound, on membrane-bound ATPases in streptozotocin-induced diabetic rats. Al-Numair KS; Veeramani C; Alsaif MA; Chandramohan G Pharm Biol; 2015; 53(9):1372-8. PubMed ID: 25853957 [TBL] [Abstract][Full Text] [Related]
19. In vivo treatment with stobadine prevents lipid peroxidation, protein glycation and calcium overload but does not ameliorate Ca2+ -ATPase activity in heart and liver of streptozotocin-diabetic rats: comparison with vitamin E. Pekiner B; Ulusu NN; Das-Evcimen N; Sahilli M; Aktan F; Stefek M; Stolc S; Karasu C; Biochim Biophys Acta; 2002 Oct; 1588(1):71-8. PubMed ID: 12379316 [TBL] [Abstract][Full Text] [Related]
20. Sarcolemmal Ca2+-binding and enzyme activities in myocardium from hypothyroid rat. Daly MJ; Dzurba A; Tuana BS; Dhalla NS Can J Cardiol; 1986; 2(6):356-61. PubMed ID: 3026594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]