These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 9406432)

  • 1. Microtubule assembly in cold-adapted organisms: functional properties and structural adaptations of tubulins from antarctic fishes.
    Detrich HW
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):501-13. PubMed ID: 9406432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold adaptation of microtubule assembly and dynamics. Structural interpretation of primary sequence changes present in the alpha- and beta-tubulins of Antarctic fishes.
    Detrich HW; Parker SK; Williams RC; Nogales E; Downing KH
    J Biol Chem; 2000 Nov; 275(47):37038-47. PubMed ID: 10956651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature.
    Redeker V; Frankfurter A; Parker SK; Rossier J; Detrich HW
    Biochemistry; 2004 Sep; 43(38):12265-74. PubMed ID: 15379565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent neural beta tubulin from the Antarctic fish Notothenia coriiceps neglecta: potential sequence contributions to cold adaptation of microtubule assembly.
    Detrich HW; Parker SK
    Cell Motil Cytoskeleton; 1993; 24(3):156-66. PubMed ID: 8467523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain and egg tubulins from antarctic fishes are functionally and structurally distinct.
    Detrich HW; Fitzgerald TJ; Dinsmore JH; Marchese-Ragona SP
    J Biol Chem; 1992 Sep; 267(26):18766-75. PubMed ID: 1527007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects.
    Detrich HW; Johnson KA; Marchese-Ragona SP
    Biochemistry; 1989 Dec; 28(26):10085-93. PubMed ID: 2620064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of betaIII- and betaIV-tubulin isotypes in cold-adapted microtubules from Atlantic cod (Gadus morhua): antibody mapping and cDNA sequencing.
    Modig C; Olsson PE; Barasoain I; de Ines C; Andreu JM; Roach MC; Ludueña RF; Wallin M
    Cell Motil Cytoskeleton; 1999; 42(4):315-30. PubMed ID: 10223637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-stable microtubules from Antarctic fishes contain unique alpha tubulins.
    Detrich HW; Prasad V; Ludueña RF
    J Biol Chem; 1987 Jun; 262(17):8360-6. PubMed ID: 3597376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity and structure of brain tubulins from cold-adapted Antarctic fishes. Comparison to brain tubulins from a temperate fish and a mammal.
    Detrich HW; Overton SA
    J Biol Chem; 1986 Aug; 261(23):10922-30. PubMed ID: 3733739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colchicine-binding sites of brain tubulins from an antarctic fish and from a mammal are functionally similar, but not identical: implications for microtubule assembly at low temperature.
    Skoufias DA; Wilson L; Detrich HW
    Cell Motil Cytoskeleton; 1992; 21(4):272-80. PubMed ID: 1628324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization of Antarctic fish tubulins at low temperatures: role of carboxy-terminal domains.
    Singer WD; Parker SK; Himes RH; Detrich HW
    Biochemistry; 1994 Dec; 33(51):15389-96. PubMed ID: 7803402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antarctic fish tubulins: heterogeneity, structure, amino acid compositions and charge.
    Detrich HW; Overton SA
    Comp Biochem Physiol B; 1988; 90(3):593-600. PubMed ID: 3180738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold-adapted microtubules: characterization of tubulin posttranslational modifications in the Antarctic ciliate Euplotes focardii.
    Pucciarelli S; Ballarini P; Miceli C
    Cell Motil Cytoskeleton; 1997; 38(4):329-40. PubMed ID: 9415375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution, organization, and expression of alpha-tubulin genes in the antarctic fish Notothenia coriiceps. Adaptive expansion of a gene family by recent gene duplication, inversion, and divergence.
    Parker SK; Detrich HW
    J Biol Chem; 1998 Dec; 273(51):34358-69. PubMed ID: 9852102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-associated proteins from Antarctic fishes.
    Detrich HW; Neighbors BW; Sloboda RD; Williams RC
    Cell Motil Cytoskeleton; 1990; 17(3):174-86. PubMed ID: 1980093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural thermal adaptation of β-tubulins from the Antarctic psychrophilic protozoan Euplotes focardii.
    Chiappori F; Pucciarelli S; Merelli I; Ballarini P; Miceli C; Milanesi L
    Proteins; 2012 Apr; 80(4):1154-66. PubMed ID: 22275059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic instability of microtubules from cold-living fishes.
    Billger M; Wallin M; Williams RC; Detrich HW
    Cell Motil Cytoskeleton; 1994; 28(4):327-32. PubMed ID: 7954859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of cold-adapted beta-tubulins confer cold-tolerance to human cellular microtubules.
    Modig C; Wallin M; Olsson PE
    Biochem Biophys Res Commun; 2000 Mar; 269(3):787-91. PubMed ID: 10720493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus.
    Tartaglia LJ; Shain DH
    Gene; 2008 Nov; 423(2):135-41. PubMed ID: 18718858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the cytoplasmic chaperonin containing TCP-1 from the Antarctic fish Notothenia coriiceps.
    Pucciarelli S; Parker SK; Detrich HW; Melki R
    Extremophiles; 2006 Dec; 10(6):537-49. PubMed ID: 16770691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.