These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9406865)

  • 61. ACTH-(1-24) enhances the electrically stimulated release of [3H]dopamine from rat septal slices via a dopamine D2 receptor-independent mechanism.
    Florijn WJ; Versteeg DH
    Brain Res; 1989 Aug; 494(2):247-54. PubMed ID: 2550107
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The secretory trypsin inhibitor like-peptide, PEC-60 increases dopamine D2 receptor agonist induced inhibition of GABA release in the dorsolateral neostriatum of the awake freely moving rat. An in vivo microdialysis study.
    Rimondini R; O'Connor WT; Sillard R; Mutt V; Ungerstedt U; Fuxe K
    Regul Pept; 1996 Feb; 61(2):111-7. PubMed ID: 8852813
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dopamine D2, receptor-mediated modulation of the GABAergic inhibition of substantia nigra pars reticulata neurons.
    Martin LP; Waszczak BL
    Brain Res; 1996 Aug; 729(2):156-69. PubMed ID: 8876984
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Activation of the cannabinoid receptor by delta 9-tetrahydrocannabinol reduces gamma-aminobutyric acid uptake in the globus pallidus.
    Maneuf YP; Nash JE; Crossman AR; Brotchie JM
    Eur J Pharmacol; 1996 Jul; 308(2):161-4. PubMed ID: 8840127
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Modulation of endogenous GABA release by an antagonistic adenosine A1/dopamineD1 receptor interaction in rat brain limbic regions but not basal ganglia.
    Mayfield RD; Jones BA; Miller HA; Simosky JK; Larson GA; Zahniser NR
    Synapse; 1999 Sep; 33(4):274-81. PubMed ID: 10421708
    [TBL] [Abstract][Full Text] [Related]  

  • 66. L-dopa stimulates the release of [3H]gamma-aminobutyric acid in the basal ganglia of 6-hydroxydopamine lesioned rats.
    Aceves J; Floran B; Martinez-Fong D; Sierra A; Hernandez S; Mariscal S
    Neurosci Lett; 1991 Jan; 121(1-2):223-6. PubMed ID: 1902287
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Modulation of [3H]-dopamine released by different frequencies of stimulation from rabbit retina.
    Dubocovich ML; Hensler JG
    Br J Pharmacol; 1986 May; 88(1):51-61. PubMed ID: 3708223
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Quinelorane, a dopamine D3/D2 receptor agonist, reduces prepulse inhibition of startle and ventral pallidal GABA efflux: time course studies.
    Qu Y; Swerdlow NR; Weber M; Stouffer D; Parsons LH
    Pharmacol Biochem Behav; 2008 Oct; 90(4):686-90. PubMed ID: 18579193
    [TBL] [Abstract][Full Text] [Related]  

  • 69. D2 dopamine receptor-mediated inhibition of a hyperpolarization-activated current in rod photoreceptors.
    Akopian A; Witkovsky P
    J Neurophysiol; 1996 Sep; 76(3):1828-35. PubMed ID: 8890295
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dopamine D4 receptor-mediated presynaptic inhibition of GABAergic transmission in the rat supraoptic nucleus.
    Azdad K; Piet R; Poulain DA; Oliet SH
    J Neurophysiol; 2003 Aug; 90(2):559-65. PubMed ID: 12711714
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High-dose methamphetamine treatment alters presynaptic GABA and glutamate immunoreactivity.
    Burrows KB; Meshul CK
    Neuroscience; 1999 Mar; 90(3):833-50. PubMed ID: 10218784
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Intermittent morphine treatment causes long-term desensitization of functional dopamine D2 receptors in rat striatum.
    Nestby P; Tjon GH; Visser DT; Drukarch B; Leysen JE; Mulder AH; Schoffelmeer AN
    Eur J Pharmacol; 1995 Dec; 294(2-3):771-7. PubMed ID: 8750744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by D1 and D2 dopamine receptors.
    Ruskin DN; Bergstrom DA; Walters JR
    J Pharmacol Exp Ther; 1999 Sep; 290(3):1493-501. PubMed ID: 10454529
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A mechanism underlying dopamine D1 and D2 receptor-mediated inhibition of dopaminergic neurones in the ventral tegmental area in vitro.
    Momiyama T; Todo N; Sasa M
    Br J Pharmacol; 1993 Aug; 109(4):933-40. PubMed ID: 8104652
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [3H]flunitrazepam autoradiography.
    Robertson RG; Clarke CA; Boyce S; Sambrook MA; Crossman AR
    Brain Res; 1990 Oct; 531(1-2):95-104. PubMed ID: 2289139
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement.
    Mabrouk OS; Li Q; Song P; Kennedy RT
    J Neurochem; 2011 Jul; 118(1):24-33. PubMed ID: 21534957
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of NMDA glutamate receptors in regulating D2 dopamine-dependent Fos induction in the rat striatopallidal pathway.
    Pollack AE; Bird JL; Lambert EB; Florin ZP; Castellar VL
    Brain Res; 1999 Feb; 818(2):543-7. PubMed ID: 10082844
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pre-synaptic histamine H₃ receptors modulate glutamatergic transmission in rat globus pallidus.
    Osorio-Espinoza A; Alatorre A; Ramos-Jiménez J; Garduño-Torres B; García-Ramírez M; Querejeta E; Arias-Montaño JA
    Neuroscience; 2011 Mar; 176():20-31. PubMed ID: 21195747
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission.
    Beggiato S; Tomasini MC; Borelli AC; Borroto-Escuela DO; Fuxe K; Antonelli T; Tanganelli S; Ferraro L
    J Neurochem; 2016 Jul; 138(2):254-64. PubMed ID: 27127992
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pallidal hyperdopaminergic innervation underlying D2 receptor-dependent behavioral deficits in the schizophrenia animal model established by EGF.
    Sotoyama H; Zheng Y; Iwakura Y; Mizuno M; Aizawa M; Shcherbakova K; Wang R; Namba H; Nawa H
    PLoS One; 2011; 6(10):e25831. PubMed ID: 22022452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.