BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 9407060)

  • 1. Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190.
    Li R; Zhang B; Zheng Y
    J Biol Chem; 1997 Dec; 272(52):32830-5. PubMed ID: 9407060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1.
    Zhang B; Zheng Y
    Biochemistry; 1998 Apr; 37(15):5249-57. PubMed ID: 9548756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of the p190 Rho GTPase-activating protein is controlled by its N-terminal GTP binding domain.
    Tatsis N; Lannigan DA; Macara IG
    J Biol Chem; 1998 Dec; 273(51):34631-8. PubMed ID: 9852136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA.
    Zhang B; Chernoff J; Zheng Y
    J Biol Chem; 1998 Apr; 273(15):8776-82. PubMed ID: 9535855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residues of the Rho family GTPases Rho and Cdc42 that specify sensitivity to Dbl-like guanine nucleotide exchange factors.
    Li R; Zheng Y
    J Biol Chem; 1997 Feb; 272(8):4671-9. PubMed ID: 9030518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins.
    Zhang B; Zhang Y; Wang Z; Zheng Y
    J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GTPase and Rho GAP domains of p190, a tumor suppressor protein that binds the M(r) 120,000 Ras GAP, independently function as anti-Ras tumor suppressors.
    Wang DZ; Nur-E-Kamal MS; Tikoo A; Montague W; Maruta H
    Cancer Res; 1997 Jun; 57(12):2478-84. PubMed ID: 9192829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells.
    Wang L; Yang L; Luo Y; Zheng Y
    J Biol Chem; 2003 Nov; 278(45):44617-25. PubMed ID: 12939257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.
    Zhang B; Zhang Y; Collins CC; Johnson DI; Zheng Y
    J Biol Chem; 1999 Jan; 274(5):2609-12. PubMed ID: 9915787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.
    Leonard DA; Lin R; Cerione RA; Manor D
    J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP.
    Wennerberg K; Forget MA; Ellerbroek SM; Arthur WT; Burridge K; Settleman J; Der CJ; Hansen SH
    Curr Biol; 2003 Jul; 13(13):1106-15. PubMed ID: 12842009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p190-B, a new member of the Rho GAP family, and Rho are induced to cluster after integrin cross-linking.
    Burbelo PD; Miyamoto S; Utani A; Brill S; Yamada KM; Hall A; Yamada Y
    J Biol Chem; 1995 Dec; 270(52):30919-26. PubMed ID: 8537347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p190 RhoGAP, the major RasGAP-associated protein, binds GTP directly.
    Foster R; Hu KQ; Shaywitz DA; Settleman J
    Mol Cell Biol; 1994 Nov; 14(11):7173-81. PubMed ID: 7935432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
    Zheng Y; Hart MJ; Shinjo K; Evans T; Bender A; Cerione RA
    J Biol Chem; 1993 Nov; 268(33):24629-34. PubMed ID: 8227021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucosylation and ADP ribosylation of rho proteins: effects on nucleotide binding, GTPase activity, and effector coupling.
    Sehr P; Joseph G; Genth H; Just I; Pick E; Aktories K
    Biochemistry; 1998 Apr; 37(15):5296-304. PubMed ID: 9548761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of p190 Rho-GAP by v-Src is linked to cytoskeletal disruption during transformation.
    Fincham VJ; Chudleigh A; Frame MC
    J Cell Sci; 1999 Mar; 112 ( Pt 6)():947-56. PubMed ID: 10036244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization of the GTPase-activating domain of ADP-ribosylation factor domain protein 1 (ARD1).
    Vitale N; Moss J; Vaughan M
    J Biol Chem; 1998 Jan; 273(5):2553-60. PubMed ID: 9446556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SHP-2 positively regulates myogenesis by coupling to the Rho GTPase signaling pathway.
    Kontaridis MI; Eminaga S; Fornaro M; Zito CI; Sordella R; Settleman J; Bennett AM
    Mol Cell Biol; 2004 Jun; 24(12):5340-52. PubMed ID: 15169898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.