BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9407117)

  • 21. Distinct domains of myocyte enhancer binding factor-2A determining nuclear localization and cell type-specific transcriptional activity.
    Yu YT
    J Biol Chem; 1996 Oct; 271(40):24675-83. PubMed ID: 8798735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain.
    Zhu B; Ramachandran B; Gulick T
    J Biol Chem; 2005 Aug; 280(31):28749-60. PubMed ID: 15834131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation.
    Novitch BG; Spicer DB; Kim PS; Cheung WL; Lassar AB
    Curr Biol; 1999 May; 9(9):449-59. PubMed ID: 10322110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins.
    Quinn ZA; Yang CC; Wrana JL; McDermott JC
    Nucleic Acids Res; 2001 Feb; 29(3):732-42. PubMed ID: 11160896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist.
    Spicer DB; Rhee J; Cheung WL; Lassar AB
    Science; 1996 Jun; 272(5267):1476-80. PubMed ID: 8633239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor.
    De Luca A; Severino A; De Paolis P; Cottone G; De Luca L; De Falco M; Porcellini A; Volpe M; Condorelli G
    Biochem J; 2003 Feb; 369(Pt 3):477-84. PubMed ID: 12371907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angiotensin II induces myocyte enhancer factor 2- and calcineurin/nuclear factor of activated T cell-dependent transcriptional activation in vascular myocytes.
    Suzuki E; Nishimatsu H; Satonaka H; Walsh K; Goto A; Omata M; Fujita T; Nagai R; Hirata Y
    Circ Res; 2002 May; 90(9):1004-11. PubMed ID: 12016267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of Xenopus MyoD transcription by members of the MEF2 protein family.
    Wong MW; Pisegna M; Lu MF; Leibham D; Perry M
    Dev Biol; 1994 Dec; 166(2):683-95. PubMed ID: 7813786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positive feedback regulation between Akt2 and MyoD during muscle differentiation. Cloning of Akt2 promoter.
    Kaneko S; Feldman RI; Yu L; Wu Z; Gritsko T; Shelley SA; Nicosia SV; Nobori T; Cheng JQ
    J Biol Chem; 2002 Jun; 277(26):23230-5. PubMed ID: 11948187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity.
    Lemercier C; Verdel A; Galloo B; Curtet S; Brocard MP; Khochbin S
    J Biol Chem; 2000 May; 275(20):15594-9. PubMed ID: 10748098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle.
    Dionyssiou MG; Nowacki NB; Hashemi S; Zhao J; Kerr A; Tsushima RG; McDermott JC
    J Mol Cell Cardiol; 2013 Jan; 54():35-44. PubMed ID: 23137781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation.
    Konig S; Hinard V; Arnaudeau S; Holzer N; Potter G; Bader CR; Bernheim L
    J Biol Chem; 2004 Jul; 279(27):28187-96. PubMed ID: 15084602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of the MADS-box/MEF2 domain of MEF2A bound to DNA and its implication for myocardin recruitment.
    Wu Y; Dey R; Han A; Jayathilaka N; Philips M; Ye J; Chen L
    J Mol Biol; 2010 Mar; 397(2):520-33. PubMed ID: 20132824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of PDGF-BB on proliferation and transition through the MyoD-myogenin-MEF2A expression program during myogenesis in mouse C2 myoblasts.
    Yablonka-Reuveni Z; Rivera AJ
    Growth Factors; 1997; 15(1):1-27. PubMed ID: 9401815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the MEF2 family of transcription factors by p38.
    Zhao M; New L; Kravchenko VV; Kato Y; Gram H; di Padova F; Olson EN; Ulevitch RJ; Han J
    Mol Cell Biol; 1999 Jan; 19(1):21-30. PubMed ID: 9858528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway.
    de Angelis L; Zhao J; Andreucci JJ; Olson EN; Cossu G; McDermott JC
    Dev Biol; 2005 Jul; 283(1):171-9. PubMed ID: 15890335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins.
    Molkentin JD; Black BL; Martin JF; Olson EN
    Cell; 1995 Dec; 83(7):1125-36. PubMed ID: 8548800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dynamic role for HDAC7 in MEF2-mediated muscle differentiation.
    Dressel U; Bailey PJ; Wang SC; Downes M; Evans RM; Muscat GE
    J Biol Chem; 2001 May; 276(20):17007-13. PubMed ID: 11279209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes.
    Thai MV; Guruswamy S; Cao KT; Pessin JE; Olson AL
    J Biol Chem; 1998 Jun; 273(23):14285-92. PubMed ID: 9603935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TRIM72, a novel negative feedback regulator of myogenesis, is transcriptionally activated by the synergism of MyoD (or myogenin) and MEF2.
    Jung SY; Ko YG
    Biochem Biophys Res Commun; 2010 May; 396(2):238-45. PubMed ID: 20399744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.