BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9407288)

  • 1. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage.
    Cheng KH; Cheng YS; Yeh HC; Swift DL
    J Biomech Eng; 1997 Nov; 119(4):476-82. PubMed ID: 9407288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental method for measuring aerosol deposition efficiency in the human oral airway.
    Cheng KH; Cheng YS; Yeh HC; Swift DL
    Am Ind Hyg Assoc J; 1997 Mar; 58(3):207-13. PubMed ID: 9075311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles.
    Xi J; Longest PW
    J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and uptake of MTBE and ethanol vapors in a human upper airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Inhal Toxicol; 2006 Mar; 18(3):169-84. PubMed ID: 16399659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway.
    Xi J; Longest PW
    Ann Biomed Eng; 2007 Apr; 35(4):560-81. PubMed ID: 17237991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult.
    Xi J; Berlinski A; Zhou Y; Greenberg B; Ou X
    Ann Biomed Eng; 2012 Dec; 40(12):2579-95. PubMed ID: 22660850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of electrostatic charge on deposition of uniformly charged monodisperse particles in the nasal extrathoracic airways of an infant.
    Azhdarzadeh M; Olfert JS; Vehring R; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):30-4. PubMed ID: 24689985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of nasal and laryngeal airways in children: implications in breathing and inhaled aerosol dynamics.
    Xi J; Si X; Zhou Y; Kim J; Berlinski A
    Respir Care; 2014 Feb; 59(2):263-73. PubMed ID: 23821760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model.
    Xu XY; Ni SJ; Fu M; Zheng X; Luo N; Weng WG
    J Therm Biol; 2017 Dec; 70(Pt A):53-63. PubMed ID: 29074026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.
    Zhang Z; Kleinstreuer C
    Inhal Toxicol; 2011 Jan; 23(1):44-57. PubMed ID: 21222561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional anatomy of the upper airway.
    Morris IR
    Emerg Med Clin North Am; 1988 Nov; 6(4):639-69. PubMed ID: 3056703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat.
    Zhang Y; Finlay WH
    J Aerosol Med; 2005; 18(4):460-73. PubMed ID: 16379621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for the uptake of inhaled vapors in the nose of the dog during cyclic breathing.
    Gerde P; Dahl AR
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):276-88. PubMed ID: 2068727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat and water vapor transport in the human upper airways at hyperbaric conditions.
    Nuckols ML; Zumrick JL; Johnson CE
    J Biomech Eng; 1983 Feb; 105(1):24-30. PubMed ID: 6843098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related scaling for aerosol and vapor deposition in the upper airways of humans.
    Swift DL
    Health Phys; 1989; 57 Suppl 1():293-7. PubMed ID: 2691451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspiratory and expiratory aerosol deposition in the upper airway.
    Verbanck S; Kalsi HS; Biddiscombe MF; Agnihotri V; Belkassem B; Lacor C; Usmani OS
    Inhal Toxicol; 2011 Feb; 23(2):104-11. PubMed ID: 21309663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of theoretical and experimental particle diffusion data within human airway casts.
    Zhang Z; Martonen T
    Cell Biochem Biophys; 1995-1996; 27(2):97-108. PubMed ID: 9106394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.