These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9407290)

  • 1. Monte Carlo model for determination of the role of heat generation in laser-irradiated tissue.
    Welch AJ; Gardner CM
    J Biomech Eng; 1997 Nov; 119(4):489-95. PubMed ID: 9407290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the distribution of laser light in port-wine stains with the Monte Carlo method.
    Smithies DJ; Butler PH
    Phys Med Biol; 1995 May; 40(5):701-31. PubMed ID: 7652003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature distributions in laser-heated biological tissue with application to birthmark removal.
    Loze MK; Wright CD
    J Biomed Opt; 2001 Jan; 6(1):74-85. PubMed ID: 11178583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions.
    Milanic M; Majaron B
    J Biomed Opt; 2011 Dec; 16(12):128002. PubMed ID: 22191938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of port wine stain laser therapy by skin preheating prior to cryogen spray cooling: a numerical simulation.
    Jia W; Aguilar G; Verkruysse W; Franco W; Nelson JS
    Lasers Surg Med; 2006 Feb; 38(2):155-62. PubMed ID: 16493663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media.
    Verkruysse W; Lucassen GW; de Boer JF; Smithies DJ; Nelson JS; van Gemert MJ
    Phys Med Biol; 1997 Jan; 42(1):51-65. PubMed ID: 9015808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new mathematical approach to the diffusion approximation theory for selective photothermolysis modeling and its implication in laser treatment of port-wine stains.
    Shafirstein G; Bäumler W; Lapidoth M; Ferguson S; North PE; Waner M
    Lasers Surg Med; 2004; 34(4):335-47. PubMed ID: 15083495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating light transport through skin for color prediction of port wine stain lesions: a review.
    Lister T; Wright PA; Chappell PH
    J Biomed Opt; 2012 Nov; 17(11):110901. PubMed ID: 23151537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy.
    van Gemert MJ; Smithies DJ; Verkruysse W; Milner TE; Nelson JS
    Phys Med Biol; 1997 Jan; 42(1):41-50. PubMed ID: 9015807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogen spray cooling efficiency: improvement of port wine stain laser therapy through multiple-intermittent cryogen spurts and laser pulses.
    Aguilar G; Díaz SH; Lavernia EJ; Nelson JS
    Lasers Surg Med; 2002; 31(1):27-35. PubMed ID: 12124712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser beam diameter for port wine stain treatment.
    Keijzer M; Pickering JW; van Gemert MJ
    Lasers Surg Med; 1991; 11(6):601-5. PubMed ID: 1753854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new Monte Carlo program for simulating light transport through Port Wine Stain skin.
    Lister T; Wright PA; Chappell PH
    Lasers Med Sci; 2014 May; 29(3):1017-28. PubMed ID: 24142045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling.
    Yudovsky D; Durkin AJ
    Appl Opt; 2011 Jul; 50(21):4237-45. PubMed ID: 21772413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical modelling of light distributions in skin tissue following laser irradiation.
    Miller ID; Veitch AR
    Lasers Surg Med; 1993; 13(5):565-71. PubMed ID: 8264329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels.
    Nelson JS; Milner TE; Anvari B; Tanenbaum BS; Svaasand LO; Kimel S
    Lasers Surg Med; 1996; 19(2):224-9. PubMed ID: 8887927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A library based fitting method for visual reflectance spectroscopy of human skin.
    Verkruysse W; Zhang R; Choi B; Lucassen G; Svaasand LO; Nelson JS
    Phys Med Biol; 2005 Jan; 50(1):57-70. PubMed ID: 15715422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat generation in laser irradiated tissue.
    Welch AJ; Pearce JA; Diller KR; Yoon G; Cheong WF
    J Biomech Eng; 1989 Feb; 111(1):62-8. PubMed ID: 2747235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods.
    Ash C; Dubec M; Donne K; Bashford T
    Lasers Med Sci; 2017 Nov; 32(8):1909-1918. PubMed ID: 28900751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical model for light distribution during transscleral cyclophotocoagulation.
    Nemati B; Dunn A; Welch AJ; Rylander HG
    Appl Opt; 1998 Feb; 37(4):764-71. PubMed ID: 18268651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.