These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9407292)

  • 1. On the magnetic behavior of the MA 956 superalloy.
    González-Carrasco JL; Cebollada F; Cristina MC; González-Doncel G
    J Biomed Mater Res; 1997 Dec; 37(4):453-6. PubMed ID: 9407292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro corrosion behaviour of MA 956 superalloy.
    Escudero ML; González-Carrasco JL
    Biomaterials; 1994 Nov; 15(14):1175-80. PubMed ID: 7893921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical impedance spectroscopy of preoxidized MA 956 superalloy during in vitro experiments.
    Escudero ML; González-Carrasco JL; García-Alonso C; Ramírez E
    Biomaterials; 1995 Jun; 16(9):735-40. PubMed ID: 7578779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the corrosion behavior of MA-956 and conventional metallic biomaterials.
    Escudero ML; López MF; Ruiz J; García-Alonso MC; Canahua H
    J Biomed Mater Res; 1996 Jul; 31(3):313-7. PubMed ID: 8806056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate roughness on the corrosion behaviour of the Al2O3/MA 956 system.
    García-Alonso MC; Escudero ML; González-Carrasco JL; Chao J
    Biomaterials; 2000 Jan; 21(1):79-87. PubMed ID: 10619681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of magnetic behaviour and in vitro biocompatibility of ferritic PM2000 alloy.
    Flores MS; Ciapetti G; González-Carrasco JL; Montealegre MA; Multigner M; Pagani S; Rivero G
    J Mater Sci Mater Med; 2004 May; 15(5):559-65. PubMed ID: 15386963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of MA 956 superalloy and alpha-alumina particles on some markers of human osteoblastic cells in primary culture.
    Rodrigo AM; Martínez ME; Martínez P; Escudero ML; Ruíz J; Saldaña L; Gómez-García L; Fernández L; del Valle I; Munuera L
    J Biomed Mater Res; 2001 Jan; 54(1):30-6. PubMed ID: 11077400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal conditions for alumina coating formation on the MA956 superalloy for prosthetic bearing applications.
    Ruiz J; Escudero ML; Canahua H; García-Alonso MC
    J Biomed Mater Res; 1999 Aug; 46(2):179-85. PubMed ID: 10379995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histological assessment of sintered metal-fibre-web materials.
    Jansen JA; van't Hof MA
    J Biomater Appl; 1994 Jul; 9(1):30-54. PubMed ID: 7983585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy.
    García-Alonso MC; Saldaña L; Vallés G; González-Carrasco JL; González-Cabrero J; Martínez ME; Gil-Garay E; Munuera L
    Biomaterials; 2003 Jan; 24(1):19-26. PubMed ID: 12417174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of mechanical properties and biological response of an alumina-forming Ni-free ferritic alloy.
    González-Carrasco JL; Ciapetti G; Montealegre MA; Pagani S; Chao J; Baldini N
    Biomaterials; 2005 Jun; 26(18):3861-71. PubMed ID: 15626434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy.
    Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N
    J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and composition of annealed Al/Ti-metallization layers.
    Hofmann M; Gemming T; Wetzig K
    Anal Bioanal Chem; 2004 Jun; 379(4):547-53. PubMed ID: 15103444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of surface treatment on the dissolution of titanium-based implant materials.
    Wisbey A; Gregson PJ; Peter LM; Tuke M
    Biomaterials; 1991 Jul; 12(5):470-3. PubMed ID: 1892982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.
    Cardoso FF; Ferrandini PL; Lopes ESN; Cremasco A; Caram R
    J Mech Behav Biomed Mater; 2014 Apr; 32():31-38. PubMed ID: 24394773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of titanium alloy implants.
    Browne M; Gregson PJ
    Biomaterials; 1994 Sep; 15(11):894-8. PubMed ID: 7833436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants.
    Byeli AV; Kukareko VA; Kononov AG
    J Mech Behav Biomed Mater; 2012 Feb; 6():89-94. PubMed ID: 22301177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents.
    Hermawan H; Dubé D; Mantovani D
    J Biomed Mater Res A; 2010 Apr; 93(1):1-11. PubMed ID: 19437432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and properties of Ti-7.5Mo-xFe alloys.
    Lin DJ; Lin JH; Ju CP
    Biomaterials; 2002 Apr; 23(8):1723-30. PubMed ID: 11950042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.