These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 9407968)
1. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Böttinger EP; Jakubczak JL; Haines DC; Bagnall K; Wakefield LM Cancer Res; 1997 Dec; 57(24):5564-70. PubMed ID: 9407968 [TBL] [Abstract][Full Text] [Related]
2. Transforming growth factor-beta signaling helps specify tumor type in DMBA and hormone-induced mammary cancers. Crowley MR; Frost A; Chen DT; Baffi MO; Nicola T; Serra R Differentiation; 2006 Feb; 74(1):40-52. PubMed ID: 16466399 [TBL] [Abstract][Full Text] [Related]
3. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Gorska AE; Joseph H; Derynck R; Moses HL; Serra R Cell Growth Differ; 1998 Mar; 9(3):229-38. PubMed ID: 9543389 [TBL] [Abstract][Full Text] [Related]
4. A transgenic mouse model for mammary carcinogenesis. Li B; Murphy KL; Laucirica R; Kittrell F; Medina D; Rosen JM Oncogene; 1998 Feb; 16(8):997-1007. PubMed ID: 9519874 [TBL] [Abstract][Full Text] [Related]
5. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Forrester E; Chytil A; Bierie B; Aakre M; Gorska AE; Sharif-Afshar AR; Muller WJ; Moses HL Cancer Res; 2005 Mar; 65(6):2296-302. PubMed ID: 15781643 [TBL] [Abstract][Full Text] [Related]
6. Synergistic interaction of transforming growth factor alpha and c-myc in mouse mammary and salivary gland tumorigenesis. Amundadottir LT; Johnson MD; Merlino G; Smith GH; Dickson RB Cell Growth Differ; 1995 Jun; 6(6):737-48. PubMed ID: 7669729 [TBL] [Abstract][Full Text] [Related]
7. Long-term exposure to elevated levels of circulating TIMP-1 but not mammary TIMP-1 suppresses growth of mammary carcinomas in transgenic mice. Yamazaki M; Akahane T; Buck T; Yoshiji H; Gomez DE; Schoeffner DJ; Okajima E; Harris SR; Bunce OR; Thorgeirsson SS; Thorgeirsson UP Carcinogenesis; 2004 Sep; 25(9):1735-46. PubMed ID: 15166086 [TBL] [Abstract][Full Text] [Related]
9. Expression of a dominant negative type II TGF-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Amendt C; Schirmacher P; Weber H; Blessing M Oncogene; 1998 Jul; 17(1):25-34. PubMed ID: 9671311 [TBL] [Abstract][Full Text] [Related]
10. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation. Kirma N; Luthra R; Jones J; Liu YG; Nair HB; Mandava U; Tekmal RR Cancer Res; 2004 Jun; 64(12):4162-70. PubMed ID: 15205327 [TBL] [Abstract][Full Text] [Related]
12. Blocking transforming growth factor beta signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Go C; Li P; Wang XJ Cancer Res; 1999 Jun; 59(12):2861-8. PubMed ID: 10383147 [TBL] [Abstract][Full Text] [Related]
13. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. Böttinger EP; Jakubczak JL; Roberts IS; Mumy M; Hemmati P; Bagnall K; Merlino G; Wakefield LM EMBO J; 1997 May; 16(10):2621-33. PubMed ID: 9184209 [TBL] [Abstract][Full Text] [Related]
14. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Bierie B; Stover DG; Abel TW; Chytil A; Gorska AE; Aakre M; Forrester E; Yang L; Wagner KU; Moses HL Cancer Res; 2008 Mar; 68(6):1809-19. PubMed ID: 18339861 [TBL] [Abstract][Full Text] [Related]
15. Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Witty JP; Lempka T; Coffey RJ; Matrisian LM Cancer Res; 1995 Apr; 55(7):1401-6. PubMed ID: 7882342 [TBL] [Abstract][Full Text] [Related]
16. The role of human prolactin and its antagonist, G129R, in mammary gland development and DMBA-initiated tumorigenesis in transgenic mice. Tomblyn S; Langenheim JF; Jacquemart IC; Holle E; Chen WY Int J Oncol; 2005 Nov; 27(5):1381-9. PubMed ID: 16211235 [TBL] [Abstract][Full Text] [Related]
17. Transgenic mice provide genetic evidence that transforming growth factor alpha promotes skin tumorigenesis via H-ras-dependent and H-ras-independent pathways. Jhappan C; Takayama H; Dickson RB; Merlino G Cell Growth Differ; 1994 Apr; 5(4):385-94. PubMed ID: 8043512 [TBL] [Abstract][Full Text] [Related]
18. Acceleration of mammary neoplasia in transforming growth factor alpha transgenic mice by 7,12-dimethylbenzanthracene. Coffey RJ; Meise KS; Matsui Y; Hogan BL; Dempsey PJ; Halter SA Cancer Res; 1994 Apr; 54(7):1678-83. PubMed ID: 8137281 [TBL] [Abstract][Full Text] [Related]
19. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Thun-Battersby S; Mevissen M; Löscher W Cancer Res; 1999 Aug; 59(15):3627-33. PubMed ID: 10446973 [TBL] [Abstract][Full Text] [Related]
20. Mammary carcinogenesis in transgenic mice expressing a dominant-negative mutant of DNA polymerase beta in their mammary glands. Wang L; Bhattacharyya N; Rabi T; Wang L; Banerjee S Carcinogenesis; 2007 Jun; 28(6):1356-63. PubMed ID: 17166880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]