These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 940822)

  • 1. Inhibition of the biohydrogenation of dietary C18 unsaturated fatty acids by rumen bacteria using some inhibitors of methanogenesis.
    Kemp P; Lander DJ
    Proc Nutr Soc; 1976 May; 35(1):31A-32A. PubMed ID: 940822
    [No Abstract]   [Full Text] [Related]  

  • 2. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA.
    Jafari S; Meng GY; Rajion MA; Jahromi MF; Ebrahimi M
    J Agric Food Chem; 2016 Jun; 64(22):4522-30. PubMed ID: 27192629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep.
    Chikunya S; Demirel G; Enser M; Wood JD; Wilkinson RG; Sinclair LA
    Br J Nutr; 2004 Apr; 91(4):539-50. PubMed ID: 15035681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pure culture studies of inhibitors for methanogenic bacteria.
    Prins RA; van Nevel CJ; Demeyer DI
    Antonie Van Leeuwenhoek; 1972; 38(3):281-7. PubMed ID: 4538621
    [No Abstract]   [Full Text] [Related]  

  • 5. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches.
    Vasta V; Daghio M; Cappucci A; Buccioni A; Serra A; Viti C; Mele M
    J Dairy Sci; 2019 May; 102(5):3781-3804. PubMed ID: 30904293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biohydrogenation of erucic acid (22:1 n-9 cis) in an "artificial rumen". II) Effect of pH, potential hydrogen donors and type of anaerobiosis].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):212-8. PubMed ID: 45245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipolysis and biohydrogenation of soybean oil in the rumen in vitro: inhibition by antimicrobials.
    Van Nevel C; Demeyer DI
    J Dairy Sci; 1995 Dec; 78(12):2797-806. PubMed ID: 8675762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid.
    Hazlewood GP; Kemp P; Lander D; Dawson RM
    Br J Nutr; 1976 Mar; 35(2):293-7. PubMed ID: 943177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem.
    Jenkins TC; Wallace RJ; Moate PJ; Mosley EE
    J Anim Sci; 2008 Feb; 86(2):397-412. PubMed ID: 18042812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biohydrogenation of erucic acid (22:1 n-9 cis) in artificial rumen. I). Effect of octadecapolyenoic fatty acids and the incubation period].
    Borgatti AR; Trigari G
    Boll Soc Ital Biol Sper; 1979 Feb; 55(3):205-11. PubMed ID: 553585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of methanogenesis in the rumen of sheep. II. Methanogenesis after administration of inhibitors].
    Zawadzki W
    Pol Arch Weter; 1986; 25(1):127-44. PubMed ID: 3448597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenation of chloroplast lipids by rumen bacteria.
    WRIGHT DE
    Nature; 1960 Feb; 185(4712):546-7. PubMed ID: 18988348
    [No Abstract]   [Full Text] [Related]  

  • 14. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations.
    Troegeler-Meynadier A; Bret-Bennis L; Enjalbert F
    Reprod Nutr Dev; 2006; 46(6):713-24. PubMed ID: 17169317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stoned olive pomace on rumen microbial communities and polyunsaturated fatty acid biohydrogenation: an in vitro study.
    Pallara G; Buccioni A; Pastorelli R; Minieri S; Mele M; Rapaccini S; Messini A; Pauselli M; Servili M; Giovannetti L; Viti C
    BMC Vet Res; 2014 Nov; 10():271. PubMed ID: 25424901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A decade of developments in the area of fat supplementation research with beef cattle and sheep.
    Hess BW; Moss GE; Rule DC
    J Anim Sci; 2008 Apr; 86(14 Suppl):E188-204. PubMed ID: 18156350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the protozoan Isotricha prostoma, liquid-, and solid-associated bacteria in rumen biohydrogenation of linoleic acid.
    Boeckaert C; Morgavi DP; Jouany JP; Maignien L; Boon N; Fievez V
    Animal; 2009 Jul; 3(7):961-71. PubMed ID: 22444816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desaturation and saturation of fatty acids by sheep rumen bacteria: optimal conditions and cofactor requirements.
    Sklan D; Budowski P
    J Dairy Sci; 1974 Jan; 57(1):56-60. PubMed ID: 4149299
    [No Abstract]   [Full Text] [Related]  

  • 19. [Isolation of typical rumen bacteria acting on biohydrogenation of unsaturated fatty acids].
    Viviani R; Borgatti AR; Matteuzzi D
    Boll Soc Ital Biol Sper; 1968 Dec; 44(24):2185-9. PubMed ID: 5737331
    [No Abstract]   [Full Text] [Related]  

  • 20. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria.
    Kemp P; Lander DJ; Holman RT
    Br J Nutr; 1984 Jul; 52(1):171-7. PubMed ID: 6743637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.