These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9409)

  • 21. The effects of pH and inhibitors upon the catalytic activity of the dihydroorotase of multienzymatic protein pyr1-3 from mouse Ehrlich ascites carcinoma.
    Christopherson RI; Jones ME
    J Biol Chem; 1980 Apr; 255(8):3358-70. PubMed ID: 6102565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relaxation spectra of aspartate transcarbamylase. Interaction of the catalytic subunit with carbamyl phosphate, succinate, and L-malate.
    Hammes GG; Porter RW; Stark GR
    Biochemistry; 1971 Mar; 10(6):1046-50. PubMed ID: 4927803
    [No Abstract]   [Full Text] [Related]  

  • 23. Kinetic mechanism of catalytic subunits (c3) of E. coli aspartate transcarbamylase at pH 7.0.
    Hsuanyu Y; Wedler FC
    Biochim Biophys Acta; 1988 Dec; 957(3):455-8. PubMed ID: 3058211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of pH on the cooperative behavior of aspartate transcarbamylase from Escherichia coli.
    Pastra-Landis SC; Evans DR; Lipscomb WN
    J Biol Chem; 1978 Jul; 253(13):4624-30. PubMed ID: 26686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase.
    Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER
    Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 70-amino acid zinc-binding polypeptide fragment from the regulatory chain of aspartate transcarbamoylase causes marked changes in the kinetic mechanism of the catalytic trimer.
    Zhou BB; Waldrop GL; Lum L; Schachman HK
    Protein Sci; 1994 Jun; 3(6):967-74. PubMed ID: 8069226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wheat-germ aspartate transcarbamoylase. Steady-state kinetics and stereochemistry of the binding site for L-aspartate.
    Grayson JE; Yon RJ; Butterworth PJ
    Biochem J; 1979 Nov; 183(2):247-54. PubMed ID: 534495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase.
    Gouaux JE; Lipscomb WN
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4205-8. PubMed ID: 3380787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial carbamyl phosphate and citrulline synthesis at high matrix acetylglutamate.
    Cohen NS; Cheung CW; Kyan FS; Jones EE; Raijman L
    J Biol Chem; 1982 Jun; 257(12):6898-907. PubMed ID: 7085611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of the reaction catalyzed by the catalytic subunit of aspartate transcarbamylase. Kinetic studies with carbamyl phosphate as substrate.
    Heyde E; Nagabhushanam A; Morrison JF
    Biochemistry; 1973 Nov; 12(23):4718-26. PubMed ID: 4589945
    [No Abstract]   [Full Text] [Related]  

  • 31. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase.
    Newton CJ; Stevens RC; Kantrowitz ER
    Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A kinetic model of cooperativity in aspartate transcarbamylase.
    Dembo M; Rubinow SI
    Biophys J; 1977 Jun; 18(3):245-67. PubMed ID: 329911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of van 't Hoff and calorimetrically determined enthalpies of binding of N-phosphonacetyl-L-aspartate to E. coli aspartate transcarbamylase.
    Hofmann GE; Knier BL; Allewell NM
    Biophys Chem; 1979 Jul; 10(1):47-54. PubMed ID: 385074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with carbamyl phosphate.
    Hammes GG; Wu CW
    Biochemistry; 1971 May; 10(11):2150-6. PubMed ID: 4935107
    [No Abstract]   [Full Text] [Related]  

  • 35. A loop involving catalytic chain residues 230-245 is essential for the stabilization of both allosteric forms of Escherichia coli aspartate transcarbamylase.
    Middleton SA; Stebbins JW; Kantrowitz ER
    Biochemistry; 1989 Feb; 28(4):1617-26. PubMed ID: 2655696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. I. Catalytic and regulatory properties of aspartate transcarbamylase.
    Penverne B; Hervé G
    Arch Biochem Biophys; 1983 Sep; 225(2):562-75. PubMed ID: 6354093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational analysis of carbamyl phosphate synthetase. Substitution of Glu841 leads to loss of functional coupling between the two catalytic domains of the synthetase subunit.
    Guillou F; Liao M; Garcia-Espana A; Lusty CJ
    Biochemistry; 1992 Feb; 31(6):1656-64. PubMed ID: 1737023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ligation alters the pathway of urea-induced denaturation of the catalytic trimer of Escherichia coli aspartate transcarbamylase.
    Bromberg S; LiCata VJ; Mallikarachchi D; Allewell NM
    Protein Sci; 1994 Aug; 3(8):1236-44. PubMed ID: 7987218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A unifying concept for the active site region in aspartate transcarbamylase.
    Heyde E
    Biochim Biophys Acta; 1976 Nov; 452(1):81-8. PubMed ID: 825145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of aspartate transcarbamylase from Escherichia coli for the reverse direction of reaction.
    Foote J; Lipscomb WN
    J Biol Chem; 1981 Nov; 256(22):11428-33. PubMed ID: 7028733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.