These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 9409016)

  • 1. A computational model for blood flow through highly curved arteries with asymmetric stenoses.
    Ang KC; Mazumdar J; Craig IH
    Australas Phys Eng Sci Med; 1997 Sep; 20(3):152-63. PubMed ID: 9409016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of triple arterial stenoses.
    Ang KC; Mazumdar J
    Australas Phys Eng Sci Med; 1995 Jun; 18(2):89-94. PubMed ID: 7669027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modelling of blood flow through curved stenosed arteries.
    Yao H; Ang KC; Yeo JH; Sim EK
    J Med Eng Technol; 2000; 24(4):163-8. PubMed ID: 11105289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational fluid mechanical study of blood flow in a variety of asymmetric arterial bifurcations.
    Yamaguchi T
    Front Med Biol Eng; 1993; 5(2):135-41. PubMed ID: 8241030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D unsteady flow analysis in a doubly constricted arterial vessel.
    Kumar BV; Yamaguchi T; Liu H; Himeno R
    Biorheology; 2002; 39(3-4):351-7. PubMed ID: 12122252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall shear rate measurements in an elastic curved artery model.
    Weston MW; Tarbell JM
    Biorheology; 1997; 34(1):1-17. PubMed ID: 9176587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A; Perktold K
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition.
    Konala BC; Das A; Banerjee RK
    Mol Cell Biomech; 2011 Mar; 8(1):1-20. PubMed ID: 21391325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of arterial blood flow and correlation to atherosclerosis.
    Perktold K; Rappitsch G
    Technol Health Care; 1995 Dec; 3(3):139-51. PubMed ID: 8749862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y; Lu X; Zhuang L; Wang W
    Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between intimal thickness and fluid shear in human arteries.
    Friedman MH; Hutchins GM; Bargeron CB; Deters OJ; Mark FF
    Atherosclerosis; 1981 Jun; 39(3):425-36. PubMed ID: 7259822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow in a catheterized curved artery with stenosis.
    Dash RK; Jayaraman G; Mehta KN
    J Biomech; 1999 Jan; 32(1):49-61. PubMed ID: 10050951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of spiral blood flow in a model of arterial stenosis.
    Paul MC; Larman A
    Med Eng Phys; 2009 Nov; 31(9):1195-203. PubMed ID: 19674925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models.
    Tang D; Yang C; Kobayashi S; Ku DN
    J Biomech Eng; 2004 Jun; 126(3):363-70. PubMed ID: 15341174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical flow around arterial bends for varying body mass.
    Zabielski L; Mestel AJ
    J Biomech Eng; 2000 Apr; 122(2):135-42. PubMed ID: 10834153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.