These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9409317)

  • 1. Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions.
    Gniwotta C; Morrow JD; Roberts LJ; Kühn H
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3236-41. PubMed ID: 9409317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of monohydroxy derivatives of arachidonic acid, linoleic acid, and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells.
    Wang T; Yu WG; Powell WS
    J Lipid Res; 1992 Apr; 33(4):525-37. PubMed ID: 1527476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo action of 15-lipoxygenase in early stages of human atherogenesis.
    Kühn H; Heydeck D; Hugou I; Gniwotta C
    J Clin Invest; 1997 Mar; 99(5):888-93. PubMed ID: 9062346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of distinct F2-isoprostanes in human atherosclerotic lesions.
    Praticò D; Iuliano L; Mauriello A; Spagnoli L; Lawson JA; Rokach J; Maclouf J; Violi F; FitzGerald GA
    J Clin Invest; 1997 Oct; 100(8):2028-34. PubMed ID: 9329967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates.
    Waddington EI; Croft KD; Sienuarine K; Latham B; Puddey IB
    Atherosclerosis; 2003 Mar; 167(1):111-20. PubMed ID: 12618275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients.
    Jira W; Spiteller G; Carson W; Schramm A
    Chem Phys Lipids; 1998 Jan; 91(1):1-11. PubMed ID: 9488997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of F2-isoprostanes during oxidation of human low-density lipoprotein and plasma by peroxynitrite.
    Moore KP; Darley-Usmar V; Morrow J; Roberts LJ
    Circ Res; 1995 Aug; 77(2):335-41. PubMed ID: 7614720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques.
    Folcik VA; Nivar-Aristy RA; Krajewski LP; Cathcart MK
    J Clin Invest; 1995 Jul; 96(1):504-10. PubMed ID: 7615823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoprostane levels in lipids extracted from atherosclerotic arteries of nonhuman primates.
    Thomas MJ; Chen Q; Sorci-Thomas MG; Rudel LL
    Free Radic Biol Med; 2001 Jun; 30(12):1337-46. PubMed ID: 11390178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-mediated oxidation of LDL: comparison of different cell types of the atherosclerotic lesion.
    Müller K; Carpenter KL; Mitchinson MJ
    Free Radic Res; 1998 Sep; 29(3):207-20. PubMed ID: 9802552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased levels of monohydroxy metabolites of arachidonic acid and linoleic acid in LDL and aorta from atherosclerotic rabbits.
    Wang T; Powell WS
    Biochim Biophys Acta; 1991 Jul; 1084(2):129-38. PubMed ID: 1854797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of 15-lipoxygenase in early stages of atherogenesis.
    Kühn H; Belkner J; Zaiss S; Fährenklemper T; Wohlfeil S
    J Exp Med; 1994 Jun; 179(6):1903-11. PubMed ID: 8195716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of PGF2-isoprostanes during the oxidative modification of low density lipoprotein.
    Gopaul NK; Nourooz-Zadeh J; Mallet AI; Anggård EE
    Biochem Biophys Res Commun; 1994 Apr; 200(1):338-43. PubMed ID: 8166702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxysterols in cap and core of human advanced atherosclerotic lesions.
    Garcia-Cruset S; Carpenter KL; Guardiola F; Mitchinson MJ
    Free Radic Res; 1999 May; 30(5):341-50. PubMed ID: 10342328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro.
    Lynch SM; Morrow JD; Roberts LJ; Frei B
    J Clin Invest; 1994 Mar; 93(3):998-1004. PubMed ID: 8132786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling.
    Nieman DC; Shanely RA; Luo B; Meaney MP; Dew DA; Pappan KL
    Am J Physiol Regul Integr Comp Physiol; 2014 Jul; 307(1):R68-74. PubMed ID: 24760997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity in the distribution of F(2)-isoprostanes in the lipid subfractions of atherosclerotic plaque and in vitro oxidised low density lipoprotein.
    Waddington EI; Puddey IB; Mori TA; Croft KD
    Redox Rep; 2002; 7(3):179-84. PubMed ID: 12189049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein.
    Lenz ML; Hughes H; Mitchell JR; Via DP; Guyton JR; Taylor AA; Gotto AM; Smith CV
    J Lipid Res; 1990 Jun; 31(6):1043-50. PubMed ID: 2373954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects.
    Abu-Amsha Caccetta R; Burke V; Mori TA; Beilin LJ; Puddey IB; Croft KD
    Free Radic Biol Med; 2001 Mar; 30(6):636-42. PubMed ID: 11295361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The susceptibility of low-density lipoprotein to in vitro oxidation is increased in hypercholesterolemic patients.
    Cominacini L; Pastorino AM; Garbin U; Campagnola M; de Santis A; Davoli A; Faccini G; Bertozzo L; Pasini F; Pasini AF
    Nutrition; 1994; 10(6):527-31. PubMed ID: 7703599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.