These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 9409331)

  • 1. Copper ions promote peroxidation of low density lipoprotein lipid by binding to histidine residues of apolipoprotein B100, but they are reduced at other sites on LDL.
    Wagner P; Heinecke JW
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3338-46. PubMed ID: 9409331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of histidine modification on copper-dependent lipid peroxidation in human low-density lipoprotein.
    Chen K; Frei B
    Redox Rep; 1997 Jun; 3(3):175-81. PubMed ID: 27406964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation.
    Retsky KL; Chen K; Zeind J; Frei B
    Free Radic Biol Med; 1999 Jan; 26(1-2):90-8. PubMed ID: 9890644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid hormone (T3) and its acetic derivative (TA3) protect low-density lipoproteins from oxidation by different mechanisms.
    Faure P; Oziol L; Artur Y; Chomard P
    Biochimie; 2004 Jun; 86(6):411-8. PubMed ID: 15283976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper can promote oxidation of LDL by markedly different mechanisms.
    Ziouzenkova O; Sevanian A; Abuja PM; Ramos P; Esterbauer H
    Free Radic Biol Med; 1998 Mar; 24(4):607-23. PubMed ID: 9559873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lipoprotein-copper complex in copper catalyzed-peroxidation of low-density lipoprotein.
    Kuzuya M; Yamada K; Hayashi T; Funaki C; Naito M; Asai K; Kuzuya F
    Biochim Biophys Acta; 1992 Feb; 1123(3):334-41. PubMed ID: 1536873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetradecylthioacetic acid inhibits the oxidative modification of low density lipoprotein and 8-hydroxydeoxyguanosine formation in vitro.
    Muna ZA; Doudin K; Songstad J; Ulvik RJ; Berge RK
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3255-62. PubMed ID: 9409320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of copper reduction by alpha-tocopherol in low-density lipoprotein oxidation.
    Proudfoot JM; Croft KD; Puddey IB; Beilin LJ
    Free Radic Biol Med; 1997; 23(5):720-8. PubMed ID: 9296448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins.
    Hazell LJ; Davies MJ; Stocker R
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation.
    Lodge JK; Traber MG; Packer L
    Free Radic Biol Med; 1998 Aug; 25(3):287-97. PubMed ID: 9680174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high concentration of melatonin inhibits in vitro LDL peroxidation but not oxidized LDL toxicity toward cultured endothelial cells.
    Walters-Laporte E; Furman C; Fouquet S; Martin-Nizard F; Lestavel S; Gozzo A; Lesieur D; Fruchart JC; Duriez P; Teissier E
    J Cardiovasc Pharmacol; 1998 Oct; 32(4):582-92. PubMed ID: 9781926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How different constituents of low density lipoprotein determine its oxidizability by copper: a correlational approach.
    Kontush A; Hübner C; Finckh B; Kohlschütter A; Beisiegel U
    Free Radic Res; 1996 Feb; 24(2):135-47. PubMed ID: 8845914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cu2+ -induced low density lipoprotein peroxidation is dependent on the initial O2 concentration: an O2 consumption study.
    Lodge JK; Traber MG; Sadler PJ
    Lipids; 2000 Oct; 35(10):1087-92. PubMed ID: 11104014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein.
    Ferguson E; Singh RJ; Hogg N; Kalyanaraman B
    Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of chemical in vitro models to investigate LDL oxidation: study with different initiating conditions in native and alpha-tocopherol-supplemented LDL.
    Seccia M; Albano E; Bellomo G
    Clin Chem; 1997 Aug; 43(8 Pt 1):1436-41. PubMed ID: 9267325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation.
    Filipe P; Haigle J; Freitas J; Fernandes A; Mazière JC; Mazière C; Santus R; Morlière P
    Eur J Biochem; 2002 Nov; 269(22):5474-83. PubMed ID: 12423345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin protects LDL from oxidation but does not prevent the apolipoprotein derivatization.
    Pieri C; Marra M; Gáspár R; Damjanovich S
    Biochem Biophys Res Commun; 1996 May; 222(2):256-60. PubMed ID: 8670192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant activity of ubiquinone-3 in human low density lipoprotein.
    Merati G; Pasquali P; Vergani C; Landi L
    Free Radic Res Commun; 1992; 16(1):11-7. PubMed ID: 1516845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early destruction of tryptophan residues of apolipoprotein B is a vitamin E-independent process during copper-mediated oxidation of LDL.
    Giessauf A; Steiner E; Esterbauer H
    Biochim Biophys Acta; 1995 May; 1256(2):221-32. PubMed ID: 7766701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of lipid peroxidation in mixtures of HDL and LDL, mutual effects.
    Raveh O; Pinchuk I; Fainaru M; Lichtenberg D
    Free Radic Biol Med; 2001 Dec; 31(11):1486-97. PubMed ID: 11728821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.