These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9410886)

  • 1. Distinct nuclear assembly pathways for lamins A and C lead to their increase during quiescence in Swiss 3T3 cells.
    Pugh GE; Coates PJ; Lane EB; Raymond Y; Quinlan RA
    J Cell Sci; 1997 Oct; 110 ( Pt 19)():2483-93. PubMed ID: 9410886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathway of incorporation of microinjected lamin A into the nuclear envelope.
    Goldman AE; Moir RD; Montag-Lowy M; Stewart M; Goldman RD
    J Cell Biol; 1992 Nov; 119(4):725-35. PubMed ID: 1429833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins.
    Dechat T; Korbei B; Vaughan OA; Vlcek S; Hutchison CJ; Foisner R
    J Cell Sci; 2000 Oct; 113 Pt 19():3473-84. PubMed ID: 10984438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication.
    Moir RD; Montag-Lowy M; Goldman RD
    J Cell Biol; 1994 Jun; 125(6):1201-12. PubMed ID: 7911470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle changes in A-type lamin associations detected in human dermal fibroblasts using monoclonal antibodies.
    Dyer JA; Kill IR; Pugh G; Quinlan RA; Lane EB; Hutchison CJ
    Chromosome Res; 1997 Sep; 5(6):383-94. PubMed ID: 9364940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colocalization of intranuclear lamin foci with RNA splicing factors.
    Jagatheesan G; Thanumalayan S; Muralikrishna B; Rangaraj N; Karande AA; Parnaik VK
    J Cell Sci; 1999 Dec; 112 ( Pt 24)():4651-61. PubMed ID: 10574713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the nuclear lamina as monitored by GFP-tagged A-type lamins.
    Broers JL; Machiels BM; van Eys GJ; Kuijpers HJ; Manders EM; van Driel R; Ramaekers FC
    J Cell Sci; 1999 Oct; 112 ( Pt 20)():3463-75. PubMed ID: 10504295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations of the pathway of incorporation and function of lamin A in the nuclear lamina.
    Dyer JA; Lane BE; Hutchison CJ
    Microsc Res Tech; 1999 Apr; 45(1):1-12. PubMed ID: 10206150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct changes in intranuclear lamin A/C organization during myoblast differentiation.
    Muralikrishna B; Dhawan J; Rangaraj N; Parnaik VK
    J Cell Sci; 2001 Nov; 114(Pt 22):4001-11. PubMed ID: 11739632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells.
    Moir RD; Yoon M; Khuon S; Goldman RD
    J Cell Biol; 2000 Dec; 151(6):1155-68. PubMed ID: 11121432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering lamina assembly reveals lamina-dependent and -independent functions for A-type lamins.
    Zwerger M; Roschitzki-Voser H; Zbinden R; Denais C; Herrmann H; Lammerding J; Grütter MG; Medalia O
    J Cell Sci; 2015 Oct; 128(19):3607-20. PubMed ID: 26275827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lamins and lamin-binding proteins in functional chromatin organization.
    Gotzmann J; Foisner R
    Crit Rev Eukaryot Gene Expr; 1999; 9(3-4):257-65. PubMed ID: 10651242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells.
    Paulin-Levasseur M; Blake DL; Julien M; Rouleau L
    Chromosoma; 1996; 104(5):367-79. PubMed ID: 8575249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Head and/or CaaX domain deletions of lamin proteins disrupt preformed lamin A and C but not lamin B structure in mammalian cells.
    Izumi M; Vaughan OA; Hutchison CJ; Gilbert DM
    Mol Biol Cell; 2000 Dec; 11(12):4323-37. PubMed ID: 11102526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear lamina heterogeneity in mammalian cells. Differential expression of the major lamins and variations in lamin B phosphorylation.
    Worman HJ; Lazaridis I; Georgatos SD
    J Biol Chem; 1988 Aug; 263(24):12135-41. PubMed ID: 3403563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient arrest of 3T3 cells in mitosis and inhibition of nuclear lamin reassembly around chromatin induced by anti-vimentin antibodies.
    Kouklis PD; Merdes A; Papamarcaki T; Georgatos SD
    Eur J Cell Biol; 1993 Dec; 62(2):224-36. PubMed ID: 7925481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the antigen recognized by the monoclonal antibody BU31 as lamins A and C.
    Coates PJ; Hobbs RC; Crocker J; Rowlands DC; Murray P; Quinlan R; Hall PA
    J Pathol; 1996 Jan; 178(1):21-9. PubMed ID: 8778310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and modulation of nuclear lamina structure.
    Gerace L; Comeau C; Benson M
    J Cell Sci Suppl; 1984; 1():137-60. PubMed ID: 6597817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis.
    Spann TP; Moir RD; Goldman AE; Stick R; Goldman RD
    J Cell Biol; 1997 Mar; 136(6):1201-12. PubMed ID: 9087437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamins A and C are present in the nuclei of early porcine embryos, with lamin A being distributed in large intranuclear foci.
    Foster HA; Stokes P; Forsey K; Leese HJ; Bridger JM
    Chromosome Res; 2007; 15(2):163-74. PubMed ID: 17203376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.