BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 9410897)

  • 1. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.
    Shiga N; Takeshima Y; Sakamoto H; Inoue K; Yokota Y; Yokoyama M; Matsuo M
    J Clin Invest; 1997 Nov; 100(9):2204-10. PubMed ID: 9410897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements.
    Disset A; Bourgeois CF; Benmalek N; Claustres M; Stevenin J; Tuffery-Giraud S
    Hum Mol Genet; 2006 Mar; 15(6):999-1013. PubMed ID: 16461336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.
    Patria SY; Alimsardjono H; Nishio H; Takeshima Y; Nakamura H; Matsuo M
    Proc Assoc Am Physicians; 1996 Jul; 108(4):308-14. PubMed ID: 8863344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy.
    Narita N; Nishio H; Kitoh Y; Ishikawa Y; Ishikawa Y; Minami R; Nakamura H; Matsuo M
    J Clin Invest; 1993 May; 91(5):1862-7. PubMed ID: 8387534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purine-rich exon sequences are not necessarily splicing enhancer sequence in the dystrophin gene.
    Ito T; Takeshima Y; Sakamoto H; Nakamura H; Matsuo M
    Kobe J Med Sci; 2001 Oct; 47(5):193-202. PubMed ID: 11781497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe.
    Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M
    J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dystrophin nonsense mutation induces different levels of exon 29 skipping and leads to variable phenotypes within one BMD family.
    Ginjaar IB; Kneppers AL; v d Meulen JD; Anderson LV; Bremmer-Bout M; van Deutekom JC; Weegenaar J; den Dunnen JT; Bakker E
    Eur J Hum Genet; 2000 Oct; 8(10):793-6. PubMed ID: 11039581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene.
    Tran VK; Takeshima Y; Zhang Z; Yagi M; Nishiyama A; Habara Y; Matsuo M
    J Med Genet; 2006 Dec; 43(12):924-30. PubMed ID: 16738009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dystrophin nonsense mutations can generate alternative rescue transcripts in lymphocytes.
    Nishiyama A; Takeshima Y; Zhang Z; Habara Y; Tran TH; Yagi M; Matsuo M
    Ann Hum Genet; 2008 Nov; 72(Pt 6):717-24. PubMed ID: 18652600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1.
    Zatkova A; Messiaen L; Vandenbroucke I; Wieser R; Fonatsch C; Krainer AR; Wimmer K
    Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.
    Liu HX; Cartegni L; Zhang MQ; Krainer AR
    Nat Genet; 2001 Jan; 27(1):55-8. PubMed ID: 11137998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe.
    Matsuo M; Masumura T; Nishio H; Nakajima T; Kitoh Y; Takumi T; Koga J; Nakamura H
    J Clin Invest; 1991 Jun; 87(6):2127-31. PubMed ID: 2040695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point mutations in the dystrophin gene: evidence for frequent use of cryptic splice sites as a result of splicing defects.
    Tuffery-Giraud S; Chambert S; Demaille J; Claustres M
    Hum Mutat; 1999; 14(5):359-68. PubMed ID: 10533061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter.
    Nishio H; Takeshima Y; Narita N; Yanagawa H; Suzuki Y; Ishikawa Y; Ishikawa Y; Minami R; Nakamura H; Matsuo M
    J Clin Invest; 1994 Sep; 94(3):1037-42. PubMed ID: 8083345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct mutations in a single dystrophin gene: identification of an altered splice-site as the primary Becker muscular dystrophy mutation.
    Wilton SD; Johnsen RD; Pedretti JR; Laing NG
    Am J Med Genet; 1993 Jun; 46(5):563-9. PubMed ID: 8322822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro.
    Thi Tran HT; Takeshima Y; Surono A; Yagi M; Wada H; Matsuo M
    Mol Genet Metab; 2005 Jul; 85(3):213-9. PubMed ID: 15979033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraperitoneal administration of phosphorothioate antisense oligodeoxynucleotide against splicing enhancer sequence induced exon skipping in dystrophin mRNA expressed in mdx skeletal muscle.
    Takeshima Y; Yagi M; Wada H; Matsuo M
    Brain Dev; 2005 Oct; 27(7):488-93. PubMed ID: 16198206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.